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Abstract

Background: Gut microbiota-derived metabolites, including phenylacetaldehyde (PAA), have demonstrated promising anti-

cancer properties. Gene expression alterations play a critical role in colorectal cancer (CRC) progression, influencing tumor

aggressiveness and patient survival outcomes.

Objectives: This study aimed to investigate the potential of PAA in modulating the overexpression of genes associated with

malignancy in CRC.

Methods: A high-throughput transcriptomic dataset (GSE207618) was analyzed to identify PAA-responsive genes and their

association with CRC progression. The protein-protein interaction (PPI) network was constructed to determine key hub genes

with significant downregulation under PAA influence. Clinical data from the Cancer Genome Atlas (TCGA) were integrated to

identify poor-prognosis genes, and co-expression network analysis was performed to explore molecular pathways linked to CRC

progression.

Results: Comparing the differential expression outcomes revealed that 54 genes have significant overexpression in CRC

samples, whereas their expression levels decreased in the presence of PAA. Among these, nine key genes, including MCM2,

MCM4, MCM6, MCM7, MCM10, PCNA, UHRF1, FEN1, and KIF11, were specified as hub genes based on the PPI network analysis,

which play crucial roles in core pathways associated with CRC cell proliferation and progression. According to the Cox

regression results, IFI30 and HSPA1B can be considered strong biomarkers related to the poor prognosis of CRC patients, as their

expression showed a significant drop under PAA treatment. The co-expression networks predicted a potential connection

between the expression levels of IFI30 and genes involved in cancer cell invasiveness and suppressing apoptosis. The pathways

connected to the malignant processes have correlated with the expression levels of HSPA1B.

Conclusions: The current study underscores the ability of PAA to downregulate oncogenes in CRC through transcriptomic

modulation. Given its influence on cancer-related gene expression, PAA can represent a novel therapeutic candidate that needs

further experimental validation for potential integration into CRC treatment strategies.
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1. Background

Colorectal cancer (CRC) remains a leading cause of

cancer-related mortality worldwide, driven by genetic,

environmental, and microbial factors that contribute to

its progression (1). Mutations in proto-oncogenes, tumor

suppressor genes, and DNA repair mechanisms

contribute to CRC development, while its molecular

heterogeneity complicates precise diagnosis and

treatment (2). Identifying predictive and prognostic

gene signatures is essential for advancing personalized

therapies and improving clinical outcomes (3). The gut

microbiota plays a pivotal role in regulating immune

responses, metabolism, and cancer progression (4, 5),
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with dysbiosis frequently linked to CRC tumorigenesis

through transcriptomic alteration (6, 7). Modulating the

gut microbiome has emerged as a promising approach

to enhance treatment efficacy and reduce adverse

effects (8). Among microbiota-derived metabolites,

phenylacetaldehyde (PAA) exhibits antioxidant, anti-

inflammatory, and tumor-suppressive properties (9, 10).

While primarily sourced from plant-based diets, gut

bacteria also biosynthesize PAA via aromatic amino

acids (AAAs) fermentation (11, 12). As a key

phenylpropanoid-derived metabolite, PAA disrupts

tumor metabolism, affecting phenylalanine-derived

pathways critical for cancer cell proliferation (13). It has

been implicated in metabolic reprogramming, altering

cellular energy dynamics, and restricting tumor growth

(14). Mechanistically, PAA modulates oncogenic

signaling, exerting its anti-cancer effects through

STAT3/IL-6 pathway suppression, oxidative stress

induction, and cancer stem cell (CSC) inhibition (14, 15).

Given these mechanistic insights, our study seeks to

evaluate PAA's transcriptomic impact on CRC, assessing

its ability to modulate oncogene expression and tumor-

related pathways.

2. Objectives

This study aims to explore PAA’s anti-cancer potential

in reducing CRC mortality by leveraging bioinformatics

tools and databases to identify downregulated genes.

Cancer Genome Atlas (TCGA) data analysis was used to

examine expression changes between CRC and normal

tissues, and GSE207618 analysis helped pinpoint genes

influenced by PAA. Further Cox regression analysis

assessed the relationship between gene expression and

patient mortality rates. Co-expression network analysis

uncovered key molecular pathways linked to prognostic

genes, providing deeper insight into PAA’s therapeutic

role in CRC progression.

3. Methods

3.1. Data Collection, Normalization, and Differential
Expression Analysis

A gene expression omnibus (GEO) study (accession

number GSE207618) was used to identify the effect of

PAA on CRC-associated genes. In this study, CRC cell lines

(HCT-116 and RKO) were treated with PAA, and their

influence on transcriptomic changes was analyzed

using RNA sequencing. The study included four control

samples and five PAA-treated samples. The raw data were

downloaded and processed in the RStudio environment.

Normalization was conducted using the TMM method,

and genes with zero expression were excluded based on

the CPM criterion (< 10), using the edgeR package (16).

The remaining expression matrix was transformed to a

log2 Scale using the limma package and the RMA

method for further analysis (17). To determine

differential expression, the linear model method was

applied to compare gene expression differences

between treatment and control groups. Subsequently,

the raw format of CRC data (TCGA-COAD) was obtained

using the TCGAbiolinks package (18), and TCGA data

were normalized using the same method. Differential

expression analysis was then performed between 480

colorectal CRC samples and 41 normal samples based on

the count expression matrix.

3.2. Displaying Hub Genes Using the Protein-Protein
Interaction Network

The protein-protein interaction (PPI) network was

utilized to identify hub genes among the

downregulated candidate genes affected by PAA

treatment. Genes were selected based on differential

expression analysis from the GSE207618 dataset,

applying logFC < (-1) and FDR < 0.01 as selection criteria.

Additionally, the expression levels of these genes were

examined in CRC samples from the TCGA dataset,

considering logFC > 1 and FDR < 0.01. The interactions

among all candidate genes were explored using the

STRING tool (http://string-db.org). To further classify and

prioritize hub genes, the Cytohubba plugin in Cytoscape

(v3.7.2) was employed using the maximal clique

centrality (MCC) method. Subsequently, pathways

related to hub genes were identified using the MsigDB

database via Enrichr (https://maayanlab.cloud/Enrichr/),

with a significance threshold of FDR < 0.01. Finally, the

Human Protein Atlas was used to assess the protein

expression levels of hub genes in CRC, based on

immunohistochemistry (IHC) data.

3.3. Survival Analysis and Prognostic

To assess the impact of candidate genes on the

survival outcomes of CRC patients, TCGA clinical data

were analyzed based on patients’ vital status and overall

survival duration (days alive). Gene expression values
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were normalized using Z-score scaling across all

samples, and each Z-score was integrated with clinical

data. Cox regression analysis was applied to evaluate the

association between gene expression levels and patient

mortality rate. Eventually, survival analysis using the

Kaplan-Meier curve stratified the results into high- and

low-expression groups, based on the median expression

levels of candidate genes in CRC samples.

3.4. Co-expression Networks

The co-expression network was depicted using the

normalized expression matrix from the TCGA database

to determine pathways associated with poor-prognosis

genes in CRC. Hence, the correlation between the

expression levels of candidate genes and all other genes

in the expression matrix was examined using the

Pearson correlation test. Co-expressed genes were

selected based on the criteria R > 0.5 and P < 0.01.

Finally, pathways connected to correlated genes within

the co-expression network were found using the MsigDB

database via Enrichr.

3.5. Software and Statistical Analysis

All data processing and analysis were conducted

using the R programming language (v4.0.2). Differential

expression between groups was assessed using the

linear model method, while the LogRank test was

applied to compare survival distributions between CRC

and normal samples. Furthermore, GraphPad Prism (v8)

was utilized for graphical visualization, and Cytoscape

(v3.7.2) was employed to construct and visualize PPI and

co-expression networks.

4. Results

4.1. Identification of Genes Downregulated by
Phenylacetaldehyde Treatment

The GSE207618 study was employed to identify genes

affected by PAA treatment. Differential expression

analysis revealed a significant decrease in the

expression of 107 genes in CRC cell lines treated with

PAA (LogFC < (-1), FDR < 0.01). Among these

downregulated genes, 54 genes exhibited

overexpression in CRC samples compared to normal

ones, based on TCGA data analysis (LogFC > 1, FDR < 0.01,

Figure 1A). These findings suggest that PAA may have the

potential to regulate the altered expression of these 54

identified genes in CRC (Figure 1B).

4.2. Discovery and Functional Characterization of Hub Genes

The PPI analysis identified that among the 54

candidate genes, 32 genes exhibited significant

interactions (Figure 2A). The MCC criterion determined

that nine key genes — MCM2, MCM4, MCM6, MCM7,

MCM10, PCNA, UHRF1, FEN1, and KIF11 — function as hub

genes, demonstrating the highest levels of interaction

(Figure 2B). To gain deeper insights into the functional

role of these hub genes, the Enrichr tool was utilized.

Analysis using the MsigDB database displayed their

involvement in pathways such as mTORC1 signaling,

DNA repair, G2-M checkpoint, Myc targets V1, and E2F

targets, all of which play critical roles in tumor

progression, angiogenesis, and metastasis (Figure 2C

FDR < 0.01). Furthermore, our results indicate that hub

gene expression levels are significantly elevated in

cancer compared to normal samples from TCGA-COAD

data (Figure 3A). However, PAA downregulates their

expression in CRC cells, as evidenced by GSE207618 data

analysis (Figure 3B). Additionally, findings from the

Human Protein Atlas confirm high protein levels of hub

genes in CRC patients (Figure 3C). Thus, PAA may exert a

significant suppressive effect on CRC by reducing hub

gene expression, highlighting its potential as a

therapeutic agent.

4.3. Phenylacetaldehyde’s Potential in Suppressing the
Expression of Poor-Prognostic Genes

The impact of PAA on CRC patient survival was

analyzed using TCGA clinical data. Cox regression

analysis of downregulated genes by PAA suggested that

increased expression of two genes, HSPA1B and IFI30, in

CRC samples was associated with a higher risk of cancer

mortality. These genes, recognized as poor-prognosis

markers, can serve as potential indicators in CRC

patients (HR > 1 and logRank < 0.05). To further confirm

this, gene expression levels were divided into low- and

high-expression groups using Z-score, followed by

Kaplan-Meier survival analysis for IFI30 (Figure 4A) and

HSPA1B (Figure 4B). To better define the role of these

poor-prognosis genes in CRC development and

malignancy, their expression levels were examined in

CRC and normal tissue samples from the TCGA database.

Results indicated a significant increase in IFI30 (Figure

https://brieflands.com/articles/jjcmb-161041
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Figure 1. Identifying overexpressed genes in colorectal cancer (CRC) that are downregulated by phenylacetaldehyde (PAA). A, a heatmap illustrating Cancer Genome Atlas (TCGA)
data analysis results, highlighting the overexpression of 54 candidate genes in cancer samples (n = 480) compared to normal samples (n = 41); B, a heatmap depicting expression
changes of 54 candidate genes following PAA treatment in CRC, based on GSE207618 data analysis.

Figure 2. Selection of hub genes and analysis of their relevant pathways. A, protein-protein interaction (PPI) network of downregulated genes under phenylacetaldehyde (PAA)
treatment in colorectal cancer (CRC); B, maximal clique centrality (MCC) score highlighting hub gene relevance; C, enrichment results identifying key pathways linked to hub
genes within the PPI network.

4C) and HSPA1B (Figure 4D) expression in CRC samples.

Conversely, PAA was found to markedly reduce the

expression of IFI30 and HSPA1B, as evidenced by

GSE207618 data analysis. These findings highlight PAA’s

potential to mitigate CRC mortality by modulating the

expression of malignancy-associated genes.

4.4. Correlation Between Poor-Prognostic Gene Expression
and Key Carcinogenesis Pathways

Pathways related to IFI30 and HSPA1B were identified

through the co-expression network. Our investigation

determined that the expression levels of IFI30 (Figure

5A) and HSPA1B (Figure 5C) are significantly correlated

with 80 and 22 other genes, respectively, with a

correlation coefficient greater than 0.5 and P < 0.01.

Enrichment analysis indicated that genes correlated

with IFI30 are involved in pathways related to

interferon-gamma response, IL-6/JAK/STAT3 signaling, IL-

2/STAT5 signaling, interferon-alpha response, TNF-alpha

signaling via NF-kB, KRAS signaling up, and

inflammatory response (Figure 5 FDR < 0.01). Similarly,

co-expressed genes with HSPA1B participate in various

cancer-related pathways, including TNF-alpha signaling

via NF-kB, hypoxia, p53 pathway, apoptosis, mTORC1

https://brieflands.com/articles/jjcmb-161041
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Figure 3. Analysis of hub gene expression alteration in colorectal cancer (CRC). A, significant changes in hub gene expression in cancer samples compared to normal, based on
the Cancer Genome Atlas (TCGA) dataset analysis; B, the effect of phenylacetaldehyde (PAA) treatment on decreasing hub gene expression in CRC cell lines, demonstrated
through GSE207618 data analysis (**** P < 0.0001); C, immunohistochemistry (IHC) data illustrating hub gene expression levels in CRC, as reported in the Human Protein Atlas
database.

signaling, epithelial-mesenchymal transition, glycolysis,

Myc targets V2, PI3K/AKT/mTOR signaling (Figure 5B FDR

< 0.01). These findings suggest that IFI30 and HSPA1B

may contribute to CRC pathogenesis through these

pathways.

5. Discussion

The PAA, a microbiota-derived metabolite, has shown

anticancer properties, including tumor suppression in

breast cancer by inhibiting proliferation, inducing

apoptosis, and impairing tumor progression (19).

Biosynthesized in the colon through microbial

fermentation of AAAs (11), PAA may play a key role in CRC

suppression. This study provides evidence that PAA

influences the CRC transcriptome, exerting an

inhibitory effect on tumor development. Key hub genes

MCM2, MCM4, MCM6, MCM7, MCM10, PCNA, UHRF1, FEN1,

and KIF11 were identified through PPI network analysis,

showing significant overexpression in CRC.

Transcriptomic analysis of TCGA and GSE207618 datasets

confirmed PAA’s ability to downregulate these

oncogenes, reinforcing its anti-cancer potential.

Pathway enrichment analysis linked these genes to

tumor mutation, invasion, and proliferation, further

supporting PAA as a promising therapeutic modulator

in CRC.

This study also identifies IFI30 and HSPA1B as poor-

prognosis oncogenes in CRC, linking IFI30 to immune

response and HSPA1B to cell proliferation. IFI30 has been

recognized as a prognostic biomarker across multiple

malignancies, playing a key role in tumor

immunoregulation through antigen processing and

immune cell infiltration (20). Its expression is related to

tumor-associated macrophages, making it a potential

target for immunotherapy (21). Similarly, HSPA1B is

linked to poor prognosis in various cancers and

contributes to tumor progression, metastasis, and

therapy resistance. Overexpression of HSPA1B in CRC

correlates with disease severity and treatment response,

suggesting its potential as a biomarker (22). Targeting

HSPA1B-mediated stress pathways may enhance

chemotherapy or immune checkpoint inhibitor efficacy

(23). Transcriptomic analysis of TCGA data confirmed

IFI30 and HSPA1B overexpression in CRC, while

GSE207618 analysis revealed PAA-induced

https://brieflands.com/articles/jjcmb-161041
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Figure 4. Modulation of gene expression associated with colorectal cancer (CRC) patient mortality by phenylacetaldehyde (PAA) treatment. A and B, Kaplan-Meier plots
depicting IFI30 and HSPA1B as poor-prognostic genes (HR > 1); C and D, differential expression analysis of IFI30 and HSPA1B in TCGACOAD cancer samples compared to normal; E
and F, the impact of PAA treatment on downregulating IFI30 and HSPA1B expression.

downregulation, reinforcing PAA’s therapeutic role in

mitigating tumor malignancy.

To improve the relevance of our findings, we

compared the identified genes with established CRC

gene signatures, leveraging findings from TCGA, GEO,

and large-scale transcriptomic studies. IFI30 and HSPA1B

are linked to tumor immunoregulation and stress-

response pathways, frequently associated with poor

prognosis in CRC (22, 24). Their overexpression aligns

with prior studies identifying immune-modulating

factors as potential biomarkers. The MCM family and

PCNA, as cell cycle regulators, are crucial for tumor

proliferation and chemoresistance (25, 26). Their

downregulation by PAA reinforces its therapeutic

relevance in targeting proliferative pathways. UHRF1

and FEN1, involved in DNA repair and chromatin

remodeling, contribute to tumor progression and

metastasis (27, 28). The PAA’s ability to reduce their

expression suggests a role in altering the tumor’s

epigenetic profile, consistent with previous CRC

transcriptomic models. KIF11, a key regulator of tumor

invasion and metastasis, has been consistently

identified in CRC-specific gene signatures (29). The PAA’s

suppression of KIF11 expression further supports its

potential in restricting tumor cell motility and invasion.

Overall, this comparative analysis underscores PAA’s

ability to modulate oncogenic pathways, aligning with

established CRC molecular targets, and reinforcing its

potential as a novel therapeutic candidate.

This study highlights PAA’s therapeutic potential in

CRC, but several limitations must be acknowledged. The

analysis relies solely on in silico methods, using public

transcriptomic datasets without experimental

validation. The lack of in vitro and in vivo studies

restricts direct confirmation of PAA’s biological effects

on tumor progression. Additionally, variability in

dataset sample sizes may introduce biases in gene

expression trends, emphasizing the need for controlled

experimental validation. To advance PAA as a clinical

microbiota-derived anti-cancer therapy, several research

areas must be explored: In vitro validation using cell

culture assays is essential to assess its effects on CRC cell

https://brieflands.com/articles/jjcmb-161041
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Figure 5. The correlation between cancer-related pathway genes and poor prognosis genes. A, co-expression network displaying genes correlated with IFI30 expression; B,
enrichment results for all genes within the IFI30 co-expression network; C, co-expression network visualizing genes correlated with HSPA1B expression; D, significant pathways
associated with genes in the HSPA1B co-expression network.

viability, apoptosis, and gene expression; in vivo studies

with animal models will provide preclinical insights

into PAA’s therapeutic potential in CRC suppression.

5.1. Conclusions

This study highlights the potential of PAA, a

microbiota-derived metabolite, in suppressing CRC

progression. Our findings demonstrate that PAA exerts

significant oncogene downregulation, suggesting its

role in modulating tumor development and

malignancy. Given its capacity to inhibit key cancer-

associated pathways, PAA presents a promising avenue

for therapeutic exploration. Further clinical and

experimental investigations are needed to validate its

efficacy, paving the way for microbiome-based

interventions in CRC treatment.
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