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Abstract

Background: Acute kidney injury (AKI) is a complication that occurs for various reasons after surgery, especially cardiac surgery.
This complication can lead to a prolonged treatment process, increased costs, and sometimes death. Prediction of postoperative
AKI can help anesthesiologists to implement preventive and early treatment strategies to reduce the risk of AKI.
Objectives: This study tries to predict postoperative AKI using interpretable machine learning models.
Methods: For this study, the information of 1435 patients was collected from multiple centers. The gathered data are in six cate-
gories: demographic characteristics and type of surgery, past medical history (PMH), drug history (DH), laboratory information,
anesthesia and surgery information, and postoperative variables. Machine learning methods, including support vector machine
(SVM), multilayer perceptron (MLP), decision tree (DT), random forest (RF), logistic regression, XGBoost, and AdaBoost, were used to
predict postoperative AKI. Local interpretable model-agnostic explanations (LIME) and the Shapley methods were then leveraged to
check the interpretability of models.
Results: Comparing the area under the curves (AUCs) obtained for different machine learning models show that the RF and XGBoost
methods with values of 0.81 and 0.80 best predict postoperative AKI. The interpretations obtained for the machine learning models
show that creatinine (Cr), cardiopulmonary bypass time (CPB time), blood sugar (BS), and albumin (Alb) have the most significant
impact on predictions.
Conclusions: The treatment team can be informed about the possibility of postoperative AKI before cardiac surgery using machine
learning models such as RF and XGBoost and adjust the treatment procedure accordingly. Interpretability of predictions for each
patient ensures the validity of obtained predictions.
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1. Background

Acute kidney injury (AKI) is defined as an abrupt loss
of kidney function or damage within hours or days (1). AKI
is one of the most significant complications after surgery,
especially after cardiac surgery (CS-AKI) and major non-
cardiac surgery (2). As it accompanies poor short- and long-
term outcomes and high costs of care, prevention of its oc-
currence could be a target for health care systems (3).

Every year more than 2 million cardiac surgeries are
performed, and the occurrence of CS-AKI is reported to be
from 5 to 47% (2, 4). CS-AKI is considered the second most
common cause of AKI (after sepsis) (4). It is also associ-

ated with increased mortality, morbidity, length of stay,
and higher medical costs (3). Based on statistics, more than
25% of patients who develop severe AKI will die within a
year. Even after complete renal recovery, the mortality rate
remains high for over ten years (1).

Creatinine and urine output are the critical determi-
nants of stages of AKI. These two variables describe risk, in-
jury, failure, loss, end-stage kidney disease (RIFLE), and kid-
ney disease improving global outcomes (KDIGO). Unfortu-
nately, postoperative creatinine levels may arise due to de-
hydration or muscle injury, which does not allow it to be-
come a reliable indicator for AKI (5). On the other hand,
reliance on creatinine as a diagnostic tool for AKI would
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hasten the treatment as it may rise several hours after in-
jury (6). Therefore, any diagnostic tool to predict the occur-
rence of AKI, especially after cardiac surgery, would result
in a better outcome for the patient and the health care sys-
tem.

Although the pathophysiology of CS-AKI remains com-
plex and completely understood, multiple pathways are
proposed to participate in these complications (4). Hy-
poperfusion, ischemia-reperfusion injury, neurohumoral
activation, inflammation, oxidative stress, nephrotoxins,
and mechanical factors are pathways for CS-AKI develop-
ment (4). Therefore, many preoperative, intraoperative,
and postoperative factors could be described as risk fac-
tors.

Due to the complexity of CS-AKI pathophysiology (3),
traditional statistical methods are unsuitable for this enor-
mous amount of information. Therefore, machine learn-
ing (ML) approaches are proposed to stratify and specify
recognizable factors. Although artificial intelligence (AI)
and ML have become frontier technologies worldwide (7),
these tools remain embryonic in the healthcare discipline
(8).

Studies have proposed different learning models for
the prediction of AKI after severe burns (8), thoracoabdom-
inal aortic aneurysms (7), and continuous risk prediction
of future deterioration in patients (9).

2. Objectives

This study was conducted to develop a predictive tool
for CS-AKI. In this regard, we have tried to use interpretable
ML methods to predict CS-AKI.

The rest of this paper is organized as follows. Section 2
describes the materials, the proposed method, study vari-
ables, and evaluation metrics. Section 3 presents the re-
sults of the different experiments separately. Finally, sec-
tion 4 discusses the results and section 5 is the conclusion.

3. Methods

3.1. Study Design

The Research Ethics Committee of Shahid Beheshti
University of Medical Sciences approved this retrospec-
tive/prospective multi-center cohort study in March
2019 (Ethics ID: IR.SBMU.MSP.REC.1398.175). Therefore,
the records of 1435 patients undergoing heart surgeries,
including coronary artery bypass grafting (CABG), valvu-
lar, transplant, and aortic, between 2019 and 2021 were
reviewed, of which information of 1250 patients was
retrospectively collected (by A. E. and M. A.). The data of
185 patients were added to the study prospectively after

obtaining their consent. The required data were collected
from three hospitals: Imam Hossein, Shahid Modarres,
and Masih Daneshvari, located in Tehran. Patients are
anonymous at all stages of this study.

3.2. Study Variables

The data collected in this study are based on the vari-
ables listed in Table 1. These variables are considered in six
categories, including demographic and surgery type char-
acteristics, past medical history (PMH), drug history (DH),
lab data, anesthesia and surgery information, and postop-
erative variables, and are inspired by previous studies (10).
The only exclusion criterion for this study is age < 18.

Cr-1 and Cr-7 variables are related to serum creatinine
levels in patients in the first and seventh days after surgery,
respectively. These variables and variable Cr, which shows
preoperative serum creatinine levels in patients, are used
to determine stages of AKI based on the KDIGO criterion.
Based on this criterion, labels related to predicting the in-
cidence of AKI in patients after cardiac surgery are deter-
mined. The number of patients based on their AKI stage in
the first and seventh days after surgery is shown in Table 2.

3.3. Proposed Method

This study used several machine learning approaches
to determine the best machine learning technique for pre-
dicting AKI after cardiac surgery. Well-known machine
learning methods were considered for this prediction,
such as support vector machine (SVM) (11), multi-layer per-
ceptron (MLP) (12), decision tree (DT) (13), random forest
(RF) (14), logistic regression (15), XGBoost (16) and AdaBoost
(17). All these methods were applied to classify AKI in pa-
tients, and their results were obtained in the form of the
area under the curve (AUC), precision (PR), recall (RE), F1-
score, and accuracy (ACC). Sklearn and XGBoost packages
were used in Python to generate codes related to machine
learning techniques. The variables in Table 1 were used
as input features to machine learning methods for AKI
prediction in patients undergoing cardiac surgery. The
two corresponding labels for each patient were calculated
based on preoperative and postoperative Cr values accord-
ing to KDIGO criteria. Due to the imbalance in the number
of data for each AKI stage, two classes could be considered
for each patient’s labels, including no AKI or AKI.

Since some data were not recorded in patients’ medi-
cal files when registering the information, it was necessary
to address the missing values correctly. For this purpose,
various methods were used to handle the missing values.
The issue of missing values was investigated by the mean,
median, k-nearest neighbors (KNN) (18), iterative multiple
imputations, and dropping methods, and the results were
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Table 2. The Number of Patients Based on Their AKI Stage in the First and Seventh Days After Surgery

Stage of AKI

No AKI Stage 1 Stage 2 Stage 3

First postoperative day 763 571 94 7

Seventh postoperative day 1022 367 41 5

reported for all these methods. Synthetic minority over-
sampling technique (SMOTE) (19) and class weight meth-
ods were also used to balance the two classes’ data. Besides,
for reliable results, all experiments in this study were per-
formed in 10-fold cross-validation.

One of the main contributions of this study was to ad-
dress interpretable machine learning models. For this pur-
pose, after conducting experiments and selecting the best
machine learning model for predicting AKI after cardiac
surgery, examining the interpretability of this model was
also on the agenda. The interpretability of the machine
learning model determines whether the model has been
predicted based on appropriate characteristics. For this
purpose, the feature ranking method, local interpretable
model-agnostic explanations (LIME) (20), and Shapley (21)
were used to examine the interpretability of machine
learning models in this article.

3.4. Evaluation Metrics

Various metrics, including PR, RE, F1-score, ACC, and
AUC, were used to evaluate and compare the machine
learning methods.

(1)PR =
TP

TP + FP

(2)RE =
TP

TP + FN

(3)F1− score =
2× PR×RE

PR+RE

(4)ACC =
TP + TN

TP + FP + TN + FN

(5)AUC =

∫ 1

0

Pr [TP ] (v) dv

Where TP, FP, TN, and FN indicate true positive, false
positive, true negative, and false negative, respectively.
AUC denotes the overall success of an experiment where
Pr [TP ] is a function of v = Pr [FP ]. According to this,
AUC≈0.5 and AUC≈1 reflect a range from poor to good re-
sults.

3.5. Experimental Setup

A set of experiments were designed to predict AKI after
cardiac surgery. In the first experiment, machine learning
methods, including SVM, MLP, DT, RF, logistic regression,
XGBoost, and AdaBoost, were compared for this prediction.
This was done to select the most appropriate approach
regarding AUC and other evaluation metrics. In the sec-
ond experiment, methods for overcoming missing values
and balancing data were evaluated to reveal these meth-
ods’ impact on the results obtained from machine learn-
ing methods. Finally, in the third experiment, we exam-
ined the interpretability of the results to clarify machine
learning methods’ performance. These experiments were
conducted using 80% of the data for model training and
20% for model testing. Additionally, the experiments were
done using 10-fold cross-validation, so the results were re-
liable.

4. Results

4.1. AKI Prediction Using Machine Learning Methods

This section presents the results of the first and sec-
ond experiments. According to KDIGO criteria, out of 1435
patients studied, 571 patients with AKI stage 1, 94 patients
with AKI stage 2, 7 patients with AKI stage 3, and 763 pa-
tients without AKI were identified on the first day after car-
diac surgery. These values are 367, 41, 5, and 1022 for the
seventh day after cardiac surgery. Since the balance of the
number of samples is very effective in using machine learn-
ing methods, AKI was predicted in patients in two classes
with AKI and without AKI. Accordingly, the number of pa-
tients in classes with AKI and without AKI on the first day af-
ter cardiac surgery is 672 and 763, respectively. These values
are 413 and 1022 for the seventh day after cardiac surgery.
The results of using machine learning techniques to diag-
nose AKI after cardiac surgery are shown in Tables 3 and 4
for the first and seventh day after cardiac surgery. Since
some patients’ information is missing due to inappropri-
ate file registration, the methods for handling missing val-
ues have been used; these methods’ results are presented
in Tables 3 and 4. The results of these experiments based
on PR, RE, F1-score, and ACC metrics are given in Appendix
1 and 2 in Supplementary File.
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Table 3. Comparison of Results Related to Machine Learning Methods in Predicting AKI Based on AUC Metric on the First Day After Cardiac Surgery

ML Method
Missing Value Imputation

Multiple Imputation Mean Median KNN Drop

SVM 0.73 ± 0.05 0.69 ± 0.04 0.71 ± 0.03 0.72 ± 0.05 0.72 ± 0.04

MLP 0.73 ± 0.04 0.69 ± 0.03 0.70 ± 0.03 0.69 ± 0.05 0.71 ± 0.02

DT 0.66 ± 0.04 0.64 ± 0.03 0.61 ± 0.04 0.64 ± 0.02 0.66 ± 0.04

Logistic regression 0.75 ± 0.03 0.73 ± 0.03 0.74 ± 0.03 0.74 ± 0.04 0.73 ± 0.05

AdaBoost 0.78 ± 0.03 0.76 ± 0.04 0.77 ± 0.02 0.77 ± 0.03 0.80 ± 0.04

XGBoost 0.80 ± 0.05 0.78 ± 0.04 0.78 ± 0.03 0.79 ± 0.04 0.81 ± 0.04

RF 0.81 ± 0.05 0.78 ± 0.03 0.79 ± 0.03 0.79 ± 0.04 0.80 ± 0.04

Abbreviations: SVM, support vector machine; MLP, multi-layer perceptron; DT, decision tree; RF, random forest.

Table 4. Comparison of Results Related to Machine Learning Methods in Predicting AKI Based on AUC Metric on the Seventh Day After Cardiac Surgery

ML Method
Missing Value Imputation

Multiple Imputation Mean Median KNN Drop

SVM 0.73 ± 0.07 0.71 ± 0.04 0.72 ± 0.04 0.73 ± 0.05 0.67 ± 0.08

MLP 0.71 ± 0.07 0.69 ± 0.04 0.70 ± 0.05 0.71 ± 0.04 0.65 ± 0.07

DT 0.65 ± 0.05 0.62 ± 0.03 0.65 ± 0.04 0.62 ± 0.03 0.61 ± 0.06

Logistic regression 0.73 ± 0.05 0.71 ± 0.03 0.73 ± 0.03 0.72 ± 0.05 0.66 ± 0.05

AdaBoost 0.78 ± 0.04 0.76 ± 0.03 0.77 ± 0.05 0.76 ± 0.03 0.74 ± 0.06

XGBoost 0.80 ± 0.05 0.77 ± 0.04 0.80 ± 0.04 0.78 ± 0.03 0.76 ± 0.05

RF 0.79 ± 0.05 0.77 ± 0.04 0.79 ± 0.05 0.78 ± 0.03 0.76 ± 0.05

Abbreviations: SVM, support vector machine; MLP, multi-layer Perceptron; DT, decision tree; RF, random forest.

AUC comparisons of the different machine learning
methods used in this study for the first and seventh days af-
ter cardiac surgery are shown in Figure 1. These curves are
drawn for the best method for handling the missing val-
ues, which is iterative multiple imputations. Based on the
results, the best machine learning models for predicting
AKI in patients after cardiac surgery are RF and XGboost,
with AUC 0.81 and 0.80 for the first day and 0.79 and 0.80
for the seventh day, respectively.

4.2. Interpretability of Machine Learning Models in AKI Predic-
tion

After using the machine learning models in AKI predic-
tion, we must pay attention to these models’ interpretabil-
ity. Despite their ability to predict, machine learning mod-
els do not explain to users how to make predictions. Due
to the vital importance of predictions in medical applica-
tions, it is necessary to ensure their reliability for users.
Therefore, this section investigates the best machine learn-
ing models’ interpretability in AKI prediction after cardiac
surgery using feature ranking, LIME, and Shapley methods.

Figure 2 shows the importance ranking of features for
AKI prediction on the first day after surgery using XGBoost

and RF models. These charts illustrate which features in-
fluence the predictions made by these machine learning
models. Appendix 3 in Supplementary File shows the same
charts for the seventh day after surgery.

The models’ interpretability in LIME and Shapley meth-
ods should be checked for each available sample. For a
more accurate understanding of the interpretability of the
models used to predict AKI on the first day after surgery, the
data of a patient who was predicted to be TP were analyzed
by LIME and Shapley methods. Figure 3 shows the results
of these analyses for different machine learning models.
Similar results are given for the seventh day after surgery
in Appendix 4 in Supplementary File.

The results of the predictions made by the local LIME
model and the main machine learning models for the in-
terpreted data sample are presented in Figure 4. The prox-
imity of each machine learning model’s values indicates
that LIME’s interpretation of that model is trustworthy.
Corresponding results for the seventh day after surgery are
shown in Appendix 5 in Supplementary File. Figure 5 also
shows the effect of features on the prediction of this TP data
sample by the RF model, which is interpreted based on the
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Figure 1. AUC comparisons of the different machine learning methods for (A) the first day and (B) the seventh day after cardiac surgery.

Shapley method.

5. Discussion

AKI is a serious complication of cardiac surgery that
can occur at a rate of 1 to 30%. Of these, AKI, which requires
kidney replacement therapy, has an incidence of about 1 to
5% (22). Perioperative AKI is independently associated with

an increase in short-term morbidity, treatment costs, and
long-term mortality (23). In cardiac surgery patients, post-
operative AKI is associated with an increase in ICU admis-
sion and the length of hospital stay. Also, the development
of kidney disease is accompanied by high rates of gastroin-
testinal bleeding, respiratory infection, and sepsis. In pa-
tients undergoing CABG on a cardiopulmonary bypass, the
incidence of renal failure is between 1 to 15%, with a mortal-
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Figure 2. Feature ranking charts for AKI prediction of the first day after surgery using (A) XGBoost and (B) RF models.

ity rate of 19%. The incidence of AKI cases requiring dialysis
after CABG is about 2%, with a 23 to 88% mortality rate (24).

Kidney dysfunction in cardiac surgery patients is usu-
ally multifactorial. The most common cause is acute
tubular necrosis which results from hypoxic damage to
nephrons in the medullary region of the kidney due to hy-
potension, hypovolemia, or dehydration. Other common

risk factors include preoperative renal disease with an el-
evated level of creatinine, type 1 diabetes mellitus, over 65
years of age, major vascular surgery, more than 3 hours of
cardiopulmonary bypass, recent exposure to nephrotoxic
agents such as dyes radiocontrast, bile pigments, amino-
glycoside antibiotics and nonsteroidal anti-inflammatory
drugs (NSAIDs) (24).
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Figure 3. Top 10 effective features in identifying a single test data instance as TP to predict AKI on the first day after surgery for different machine learning models analyzed by
(A) LIME and (B) Shapley methods.
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Figure 4. LIME local prediction versus actual predictions of the different machine learning methods for the TP sample.
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Early detection of patients at high risk for AKI after car-
diac surgery using risk scores can enable the anesthesiol-
ogist to apply early protective and therapeutic strategies
to reduce AKI risk. Numerous risk scores have been devel-
oped to predict AKI, but there is still no guideline to rec-
ommend a predictive model (23). This study attempted to
use ML techniques in predicting AKI after cardiac surgery.
In this regard, ML methods were applied to this prediction.
Evaluation of these methods was performed for two labels
related to the first and seventh days after surgery, and the
AUC of each method is reported in Tables 3 and 4. Based
on the results, the best ML methods for classifying data are
RF and XGBoost, with an AUC of around 0.8. RF and XG-
Boost are ensemble tree-based methods that usually show
high efficiency in classification problems. Multiple impu-
tations as a method of handling missing values have had
a more significant impact on the output of the ML meth-
ods. However, there is not much effect on the RF and XG-
Boost results because of the ability of these methods to
cope with the missing values. Also, using the combination
of SMOTE and class weight methods for data oversampling
gives the best results. In a study by Lee et al. (10), a similar
attempt was made to evaluate machine learning methods
to predict AKI for 2010 patients. In this study, the XGBoost
method showed the highest performance in prediction.

Examining the interpretability of machine learning
models is essential to ensure they work. In medical appli-
cations such as this study, the reliability of the model out-
put is more critical than in other applications. What fol-
lows in the interpretability of models is how each of the
features is involved in the prediction. The interpretability
of models can be described in general and local terms. In
general, we are looking to interpret the model based on the
average of all the samples in the dataset. We have exam-
ined this in Figure 2 for both XGBoost and RF models. Based
on this analysis, it can be generally said that the Cr (creati-
nine), CPB time (cardiopulmonary bypass time), BS (blood
sugar), and Alb (albumin) features have the most signifi-
cant impact on the predictions, respectively. However, the
interpretability of a model in the local term examines how
each feature affects a given sample. Therefore, to inves-
tigate the interpretability in the local term for black-box
models such as XGBoost and RF, which have shown the best
performance in the prediction, LIME (20) and Shapley (21)

methods were used. Examining the results of these meth-
ods shows that for a particular patient predicted as a case
with the risk of postoperative AKI, what features played a
crucial role in this prediction?

Interpretation by the LIME method for a patient with
postoperative AKI risk prediction shows that the Cr (crea-
tinine) feature has the most significant positive effect on
this prediction (see Figure 3A). Figure 4 compares the pre-
dicted values of the LIME local model and the main ma-
chine learning models for this patient. To trust the LIME in-
terpretability, the predicted values for each primary model
must be close to the corresponding values predicted by the
LIME local model. In this plot, these predicted values for
RF and XGBoost models are very close to each other, so it
can be said that the interpretation obtained from the LIME
method is reliable for this patient.

The Shapley method can also be used to interpret the
machine learning models. Like LIME, this method exam-
ines models’ interpretability based on individual samples.
As shown in Figure 3B, the dominant feature with a posi-
tive role in prediction using RF and XGBoost is Cr (creati-
nine) for the same patient. In the force plot of Figure 5, the
base value is 0.25. This value indicates the mean prediction
of the test data. Features that force the prediction to move
positively are displayed in red, and those that seek to pre-
dict negatively are shown in blue. Thus, the Cr (creatinine)
feature largely makes the prediction positive.

Hence, the treatment team can first predict AKI in-
cidence after cardiac surgery using patient information
and then evaluate the prediction’s outcome based on the
model’s interpretability for that patient. According to the
importance of the determinant features, the treatment
team can decide on the validity of the prediction.

One of the contributions of this study is the use of in-
formation from three different academic centers, which
will help increase the validity of the results. Simultaneous
use of retrospective and prospective data also improved
the quality of existing data to provide high-quality and
quantitative information suitable for machine learning
models. Furthermore, most importantly, the use of inter-
pretable machine learning methods makes it possible to
assess the reliability of the methods appropriately. Limita-
tions in the process of this study include inconsistent pa-
tient reports that increase the number of missing values.
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Also, the low incidence of AKI in stages 2 and 3 postopera-
tively among our patients led us to predict AKI regardless
of its staging.

5.1. Conclusions

It can be concluded that using machine learning meth-
ods such as RF and XGBoost can predict AKI after cardiac
surgery with promising efficiency. Interpretability of mod-
els can also help the treatment team ensure the validity
of predictions. A reliable prediction of AKI incidence in
patients can help the treatment team develop treatment
strategies to prevent postoperative AKI. Preventing AKI can
reduce treatment costs, length of hospital stay, and risk of
death. In future work, we will optimize the parameters
during surgery to reduce the risk of AKI in patients. In
other words, we want to determine the anesthesia param-
eters during the surgery in such a way as to reduce the risk
of AKI for the patient.

Supplementary Material

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal web-
site and open PDF/HTML].
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Table 1. Variables of the Study and Patient Characteristics in the Gathered Dataset

Features Frequency (%) Range of Values Mean ± SD

Demographic and surgery type characteristics

Age 18 - 86 58.08 ± 11.26

Gender

Female 570 (39.72)

Male 865 (60.28)

BMI (Kg/m2) 16.41 - 48.13 26.72 ± 3.64

Types of cardiac surgery

CABG 1007 (70.17)

Valvular 298 (20.77)

Transplant 23 (1.60)

Aortic 67 (4.67)

Other types of surgery 21 (1.46)

Missing values 19 (1.32)

Surgical settings

Elective 1222 (85.16)

Emergency 206 (14.35)

Missing values 7 (0.49)

PMH

HTN

Positive 941 (65.57)

Negative 468 (32.61)

Missing values 26 (1.81)

DM

Positive 681 (47.46)

Negative 726 (50.59)

Missing values 28 (1.95)

CKD

Positive 182 (12.68)

Negative 1221 (85.09)

Missing values 32 (2.23)

PHTN

Positive 528 (36.79)

Negative 863 (60.14)

Missing values 44 (3.07)

COPD

Positive 191 (13.31)

Negative 1213 (84.53)

Missing values 31 (2.16)

Stenting

Anesth Pain Med. 2022; 12(4):e127140. 11
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Positive 345 (24.04)

Negative 1059 (73.80)

Missing values 31 (2.16)

CVA

Positive 148 (10.31)

Negative 1256 (87.53)

Missing values 31 (2.16)

3VD

Positive 881 (61.39)

Negative 531 (37.00)

Missing values 23 (1.60)

DH

ACEI

Positive 478 (33.31)

Negative 891 (62.09)

Missing values 66 (4.60)

ARB

Positive 512 (35.68)

Negative 858 (59.79)

Missing values 65 (4.53)

BB

Positive 949 (66.13)

Negative 422 (29.41)

Missing values 64 (4.46)

Diuretics

Positive 676 (47.11)

Negative 693 (48.29)

Missing values 66 (4.60)

CCB

Positive 320 (22.30)

Negative 1049 (73.10)

Missing values 66 (4.60)

Statin

Positive 1020 (71.08)

Negative 349 (24.32)

Missing values 66 (4.60)

ASA

Positive 1074 (74.84)

Negative 296 (20.63)

Missing values 65 (4.53)

NSAIDs

Positive 98 (6.83)

Negative 1270 (88.50)
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Missing values 67 (4.67)

LAB

EF (%) 10 - 66 47.67 ± 9.66

Cr (mg/dL) 0.5 - 12 1.26 ± 0.84

Alb (g/dL) 1.8 - 6.8 3.83 ± 0.66

BS (mg/dL) 65 - 569 160.21 ± 59.76

Hb A1C (%) 2.8 - 13.7 6.35 ± 1.47

Hct (%) 15.8 - 56 39.02 ± 4.66

Anesthesia and surgery

Anesthesia time (min) 130 - 960 341.75 ± 75.11

Crystalloid (Lit) 0.3 - 4.5 1.43 ± 0.20

Colloid

Positive 1080 (75.26)

Negative 323 (22.51)

Missing values 32 (2.23)

Colloid type

HTS 3 (0.21)

Albumin 1079 (75.19)

HES 0 (0)

Gelatin 0 (0)

Not prescribed 323 (22.51)

Missing values 30 (2.09)

Colloid dose (cc) 5000 - 30000 10070.12 ± 1150.54

P.C

Positive 661 (46.06)

Negative 762 (53.10)

Missing values 12 (0.84)

FFP

Positive 840 (58.54)

Negative 585 (40.77)

Missing values 10 (0.69)

Diuretics

Positive 1382 (96.31)

Negative 39 (2.72)

Missing values 14 (0.97)

CPB time (min) 19 - 400 111.55 ± 37.15

Hemofiltration

Positive 1113 (77.56)

Negative 317 (22.09)

Missing values 5 (0.35)

Post-Op

Inotrope

Positive 278 (19.37)
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Negative 1126 (78.47)

Missing values 31 (2.16)

Cr-1 (mg/dL) 0.46 - 11.4 1.55 ± 0.83

Cr-7 (mg/dL) 0.081 - 9 1.39 ± 0.80

Dialysis

Positive 101 (7.04)

Negative 1299 (90.52)

Missing values 35 (2.44)

Nephrology consultation

Positive 304 (21.18)

Negative 1095 (76.31)

Missing values 36 (2.51)

Abbreviations: BMI, body mass index; CABG, coronary artery bypass graft; PMH, past medical history; HTN, hypertension; DM, diabetes mellitus; CKD, chronic kidney
disease; PHTN, pulmonary hypertension; COPD, chronic obstructive pulmonary disease; CVA, cerebrovascular accident; 3VD, three vessels disease; DH, drug history;
ACEI, angiotensin convertase enzyme inhibitor; ARB, angiotensin receptor blocker; BB, beta blocker; CCB, calcium channel blocker; ASA, acetylsalicylic acid; NSAIDs,
nonsteroidal anti-inflammatory drugs; EF, ejection fraction; Cr, creatinine; Alb, albumin; BS, blood sugar; Hb A1C, glycated hemoglobin; Hct, hematocrit; HTS, hetastarch;
HES, hydroxyethyl starch; P.C, packed red cells; FFP, fresh frozen plasma; CPB time, cardiopulmonary bypass time; Cr-1, creatinine day 1 postoperative; Cr-7, creatinine day
7 postoperative.
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