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Abstract

Context: Migraine mechanisms remain largely uncovered for various reasons including a very high complexity of the neurophys-
iological mechanisms implicated in this disorder and a plethora of endogenous biologically active compounds involved in the
pathological process. The functional role of parasympathetic innervation of meninges and cholinergic mechanisms of migraine
are among little explored issues despite multiple evidence indirectly indicating the role of acetylcholine (ACh) and its analogues in
migraine and other types of headache. In the current short review, we discuss morphological, functional, and clinical issues related
to the role of ACh and its analogues such as carbachol and nicotine in this most common neurological disorder.
Evidence Acquisition: In the present work, studies published from 1953 to 2016 were investigated. Literature was searched with
following keywords: acetylcholine (ACh), carbachol, nicotine, parasympathetic, mast cells, vasoactive intestinal polypeptide (VIP),
and pituitary adenylate cyclase-activating polypeptide (PACAP).
Results: Parasympathetic fibers originated from SPG and trigeminal nerves can interact at the level of meninges which is considered
to be the origin site of migraine pain. Here, in dura mater, ACh, VIP, and PACAP released by parasympathetic afferents can both affect
mast cells provoking its degranulation and additional release of neurotransmitters, or they can directly affect trigeminal nerves
inducing nociception.
Conclusions: In summary, cholinergic mechanisms in migraine and other types of headache remain little elucidated and future
studies should clarify the role of parasympathetic nerves and molecular mechanisms of cholinergic modulation within the noci-
ceptive system.
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1. Context

The pathophysiology of migraine pain, especially of
severe migraine, remains largely unknown despite high
prevalence of this neurological disorder. In the current re-
view, we present data on the parasympathetic innervation
of meninges, cholinergic, and neuropeptide modulation
of nociception, the control of mast cells implicated in early
stages of migraine attack, the local cranial parasympa-
thetic effects and general role of parasympathetic nerves
in migraine, and the effect of smoking in development of
headaches. These data extend our knowledge on little ex-
plored aspects of migraine pathology and can serve as a
background for development of new type medicines in the
complex therapy of this common neurological disorder.

2. Evidence Acquisition

Various reliable databases, such as PubMed and Web
of Science, were searched for literature. The search was

conducted using following keywords: migraine, acetyl-
choline, carbachol, nicotine, parasympathetic, mast cells,
degranulation, VIP (vasoactive intestinal polypeptide),
PACAP (pituitary adenylate cyclase-activating polypep-
tide). Some keywords were coupled for more relevant
search results (e.g., “acetylcholine + migraine”, “carba-
chol + migraine”, “mast cells + degranulation”). All irrele-
vant, duplicated and not reliable records, such as records
in books of abstracts, were excluded from consideration.
Works published from 1953 to September 2016 are pre-
sented in the current review.

3. Results

3.1. Parasympathetic Innervation of Meninges

The mechanism and location of migraine pain are the
main mysteries of this pathology. One of the most impor-
tant issues in this field (which determines the therapeutic
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strategy) is what the origin site of migraine pain is. Ac-
cording to the prevailing view, meninges, including dura
mater and pia matter densely innervated by somatic and
autonomous nerves, are supposed to be a main origin site
of migraine pain (1-3). However, whereas the trigeminal
somatic innervation has attracted most attention from re-
searchers working in this field, much less is known on the
function of parasympathetic innervation and cholinergic
ACh-mediated control of meninges.

It has been already shown that meninges are essen-
tially innervated by parasympathetic fibers coming from
sphenopalatine ganglion (SPG). It was supposed (4) that
apart from other local targets, parasympathetic nerves can
interact directly with somatic trigeminal fibers, which are
located next to meningeal vessels. SPG can even be one of
the triggering sites of migraine, as it has been shown (5)
that the electrical stimulation of SPG provokes migraine-
like effects in the case of rats’ dura mater. Moreover, the
blockage of SPG in patients with migraine can diminish
manifestations of the disorder such as headache (6). In
addition, a novel treatment of cluster headache was pro-
posed in a recent study (7): a single injection of onabo-
tulinumtoxin A to the SPG significantly reduced the num-
ber of headache attacks. Another argument testifying the
SPG role in pathophysiology of migraine is the enrich-
ment of SPG, besides ACh, with the neuropeptide pitu-
itary adenylate cyclase-activating polypeptide (PACAP), as
one of the main migraine mediators (8, 9). Finally, in a
recent work (10) it has been suggested that parasympa-
thetic mechanisms, in particular the neurotransmitters
expressed in SPG, are important for induction of cluster
headache.

3.2. Acetylcholine and Carbachol Induce Headache

As mentioned above, the parasympathetic fibers orig-
inated from SPG and trigeminal nerves can interact at
the level of meninges (4). The main neurotransmitter re-
leased from parasympathetic nerves is acetylcholine (ACh).
ACh can modulate neuronal activity (11) via ligand-gated
widespread nicotinic receptor (nAChR) or metabotropic
muscarinic receptor (mAChR). It was shown, for instance,
that in-vivo ACh can activate nociceptive fibers innervating
rabbit cornea (12). Long time ago, it was noted that ACh is
able to induce local pain in human after cutaneous appli-
cation (13), suggesting a pro-nociceptive potential of this
neurotransmitter.

Carbachol, which is a stable synthetic cholinomimetic
agent, (14) acts like ACh, through both nicotinic and mus-
carinic receptors (4). Similar to ACh, carbachol shows a
pro-nociceptive action. A previous study demonstrated
the ability of carbachol to activate nociceptive fibers in
rat skin (15). More recent double-blind crossover study

(14) demonstrated that carbachol could induce headache
in healthy subjects. It was shown in placebo-controlled
study (16) that carbachol can also induce headache in pa-
tients with migraine without aura. In a clinical study (7),
a blockage of SPG, and hence inhibition of ACh secretion
from parasympathetic nerves, decreased the frequency of
cluster headache attacks. Likewise, blockade of the stel-
late ganglion provides analgesia in chronic regional pain
syndrome (17). Among other instrumental approaches for
pain treatment, the pulsed radiofrequency (18, 19) repre-
sents as one of the promising approaches.

The mechanism of carbachol-induced headache seems
to involve endothelial production of nitric oxide (NO)
which is a pro-nociceptive agent (16). In particular, NO can
act as a substrate for HNO (nitroxyl) production, which
is an agonist of the pro-nociceptive TRPA1 receptors ex-
pressed in sensory neurons (20). Apart from nociceptive
firing, the activation of TRPA1 receptors leads to the release
of the main migraine mediator, neuropeptide calcitonin-
gene-related peptide (CGRP), and subsequent vasodilation
through activation of vascular CGRP receptors (20). In ad-
dition, carbachol also demonstrated a direct vascular ef-
fect due to the ability to dilate human cranial vessels (21).

3.3. ACh-Induced Degranulation of Mast Cells and Migraine
Triggers

Another potential target for ACh released from
parasympathetic nerves in meninges is dural mast cells,
which are abundantly expressed in these tissues (22).
Intracranial dural mast cells are immune cells localized
in close proximity to dural nociceptive nerve fibers (22,
23). Mast cells which contain, in intracellular granules, a
large amount of pro-inflammatory and pro-nociceptive
neurotransmitters, hormones and cytokines are likely
important players in migraine pathology (24). It is known
that both ACh and carbachol are potent inducers of de-
granulation of mast cells (23). Therefore, it is possible that
ACh secreted in meninges from parasympathetic nerves
can target directly mast cells to induce degranulation
accompanied by a local burst of the ‘inflammatory soup’.
Thus, degranulation of mast cells can lead to persistent
activation of dural nociceptors and this could be a neu-
rochemical mechanism of headache in migraine or other
primary headaches (22). This is an interesting issue, which
deserves further study, especially in the view of available
mast cells stabilizers that potentially can block the pro-
nociceptive effect of ACh or other degranulators of mast
cells.

3.4. Parasympathetic Regulation in Migrainers

The other potential targets of ACh in meninges are lo-
cal vessels. Vessels in dura mater are highly innervated
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not only by somatic but also by autonomous nerves, and
during migraine attack they initially experience dilata-
tion, which is often followed by vasoconstriction (25). This
bidirectional effect might be more complex than a sim-
ple action of the potent vasodilator CGRP. Apart from ves-
sels in meninges, other head and face tissues are also
innervated both by somatic trigeminal nerve branches
and autonomous nerves. Therefore, migraine or cluster
headache, apart from pain symptoms, are often mani-
fested by local autonomous symptoms in the head and face
area. Indeed, it is well known that in the majority of pa-
tients with chronic migraine, there are clinical phenom-
ena such as sinusitis, conjunctival injection, lacrimation,
nasal congestion, rhinorrhea, eyelid edema, sweating, and
facial flushing (26). These phenomena are likely caused by
parasympathetic system resulting from activation of the
trigemino-autonomic reflex. This increased sensitivity to
visual, auditory and olfactory stimulation is probably re-
lated to the decreased descending inhibitory pain control
(27).

Apart from clear local parasympathetic cranial effects,
another important issue is whether general changes in ac-
tivity of the autonomous system occur in migraine. In a
previous study, we showed that patients predisposed to
headache had a reduced nose temperature (28). However,
this low temperature effect was also observed in human
extremities (29), suggesting a more general autonomous
disturbance. In the same line, a previous work (30) con-
sidered migraine as a systemic vasculopathy, suggesting
global changes in the vascular reactivity.

It is commonly accepted that even in the interic-
tal period, many pathophysiological mechanisms of mi-
graine remain active and hence, one would expect that
autonomous changes could be detected between attacks.
However, clinical testing of the autonomous function dur-
ing migraine attack or in the interictal period is compli-
cated partially due to various indirect approaches for this
evaluation. Several authors found essential but still indi-
rect evidence on parasympathetic regulation in migraine
such as enhanced level of the ACh co-transmitter vasoac-
tive intestinal polypeptide (VIP) (31) or increased heart
rate variability (32), whereas others reported no signifi-
cant changes (33, 34). In our recent work (35), we used a
combination of several tests, such as tilt-test, deep breath-
ing test, Valsalva maneuver, handgrip test, cold-stress test,
and baroreflex assessment, for complex evaluation of the
cardiac and vascular reactivity in the interictal period of
episodic and chronic migraine. One of the main find-
ings was that in migraine only vasomotor not cardiac au-
tonomous regulation changed. The most significant ef-
fect that we found was essentially increased activity of the
sympathetic nervous system. In contrast, tests such as Val-

salva ratio, heart rate variability at rest and during tilt-
test did not indicate abnormal tonus or unusual reactivity
of the parasympathetic nervous system. Our obtained re-
sults suggested that despite the well-known local changes
in the activity of cranial parasympathetic nerves, there is
no global disturbance in the state of the parasympathetic
regulation in episodic or even in chronic migraine.

3.5. VIP and PACAP as Indicators of Activation of Parasympa-
thetic Nerves

In addition to PACAP, VIP has been found in parasympa-
thetic ganglia along with ACh (36). It is supposed that both
VIP and PACAP can contribute to or partially mediate the ef-
fect of autonomic nervous system (37). For instance, PACAP
has been shown to facilitate ACh effect in the chick embry-
onic ciliary ganglia (38). In neurons extracted from rat’s
intracardiac and submandibular ganglia, VIP and PACAP
increased the action of nicotinic agonists (37). Moreover,
VIP and PACAP can induce mast cell degranulation (39),
which as mentioned above, can contain a number of pro-
nociceptive mediators.

Significantly increased level of VIP was shown in the
blood of patients during headache attacks (40). In addi-
tion, there is a recent report on the release of PACAP in
episodic cluster headache patients (41). Importantly, the
intravenous infusion of PACAP can induce migraine-like at-
tacks in migrainers (9). Thus, both VIP and PACAP are lo-
cated in parasympathetic nerves and their release can in-
dicate activation of the autonomic nervous system. More-
over, PACAP can be considered as one of the endogenous
agents, which can trigger migraine.

3.6. Tobacco Smoking Triggers Headache

It has been reported that smokers suffer from migraine
more often than non-smokers (42, 43) suggesting a poten-
tial pro-nociceptive action of nicotine. Tobacco smoking
is frequently suggested to be a trigger for acute migraine
attacks (44-46). However, this is a highly disputable is-
sue and there are different suggestions about the relation-
ship between tobacco smoking and headache (47). Thus,
unlike the idea that tobacco smoking is a trigger of mi-
graine, there are suggestions that migraine and smoking
are independent manifestations of the common risk fac-
tors. One of the most convincing investigations conducted
on 3000 participants in northern Finland reported no cor-
relation between smoking and headache (48). Another op-
posite view suggests the anti-nociceptive action of nico-
tine as well as the appearance of headache in the case of
abstinence from smoking (49). The anti-nociceptive action
of nicotine has been stated repeatedly in in-vivo models
(50, 51). One of the reasons for the contradictory results
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with nicotine could be the presence of distinct molecu-
lar targets different from ACh receptors in the nociceptive
system, for instance, interaction with the pro-nociceptive
TRPA1 receptors in sensory neurons (52).

Unlike the clear evidence on the degranulating ability
of ACh and carbachol, the action of nicotine on mast cells
remains unclear. The ability of tobacco smoke to provoke
mast cell degranulation has been shown in isolated mast
cells (53). The opposite evidence was also obtained demon-
strating the stabilizing effect of nicotine (54).

4. Conclusions

In summary, parasympathetic innervation of
meninges can be considered as an important part of
migraine pathophysiology. Multiple neurotransmitters
such as acetylcholine, VIP, and PACAP, which can be re-
leased from parasympathetic nerves, play an important
role in the mechanism of dural nociception. The AChRs
agonist nicotine has demonstrated contradictory results:
whereas ones reported pro-nociceptive effect of nicotine,
the others considered nicotine as an anti-nociceptive
agent. Such contradiction can be explained by involve-
ment of different molecular targets for nicotine, such as
TRPA1 receptors, in nociception.

Thus, we can summarize that cholinergic mechanisms
of migraine, cluster headache, and other types of headache
have a number of conflicting aspects and need further
investigation. We believe that future study will clarify
the role of parasympathetic nerves and molecular mech-
anisms and pathways of cholinergic regulation in the pe-
ripheral nociceptive system.
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