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Abstract

Background: Laryngoscopy is the most painful noxious stimulus during anesthesia and surgery. Dexmedetomidine is increasingly
used as a sedative in surgeries involving microlaryngoscopy.
Objectives: This study aimed to evaluate the effect of dexmedetomidine and a combination of fentanyl and midazolam on mitigat-
ing the stress response in patients scheduled for microlaryngoscopy.
Methods: This randomized, double-blind clinical trial enrolled 60 patients (28 males and 32 females) aged 18 - 65 years with the
American Society of Anesthesiologists (ASA) physical status I - III. The patients were scheduled for microlaryngoscopy and equally
divided into 2 groups. Group D received 1 µg/kg of dexmedetomidine and saline bolus dose over 10 minutes before general anes-
thesia (GA) induction, followed by 0.5µg/kg/h of dexmedetomidine and saline infusions after GA induction. Group MF received 0.8
µg/kg of fentanyl plus 0.05 mg/kg of midazolam over 10 minutes before GA induction, followed by 1 µg/kg/h of fentanyl plus 0.05
mg/kg/h of midazolam as an infusion. The heart rate (HR) and mean arterial blood pressure (MAP) pressure were recorded from
baseline until the end of surgery. Infusions were stopped at the end of the surgery.
Results: The number of patients requiring propofol and intraoperative supplemental propofol was significantly lower in group D
than in group MF. The heart rate was significantly lower in group D than in group MF (P = 0.022, 0.048, 0.032, 0.045, 0.041, 0.026,
0.030, and 0.036) from induction until the end of surgery; in addition, it was comparable between both groups at baseline and
before induction. MAP was comparable between both groups for all measurements.
Conclusions: Dexmedetomidine mitigates the hemodynamic changes related to microlaryngoscopy more effectively than the
fentanyl-midazolam combination.
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1. Background

Rigid laryngoscopy and tracheal intubation remain
the gold standard for airway management despite ad-
vancements in airway equipment (1). Laryngoscopy is one
of the most painful noxious stimuli, which incites remark-
able sympathetic activity during anesthesia and surgery
(2). The pressor response is characterized by a sharp in-
crease in the mean arterial blood pressure (MAP) and heart
rate (HR), occurring 30 seconds after laryngoscopy and in-
tubation and gradually returning to baseline levels within
5 - 10 minutes (3).

These transient responses are accompanied by poten-

tially hazardous hemodynamic alterations, such as tachy-
cardia, hypertension, dysrhythmia, myocardial ischemia,
intracerebral hemorrhage, and elevated intraocular pres-
sure (4).

The pressor response to laryngoscopy and intubation
is common in situations where the anesthetic plane is too
light, the procedure is prolonged, the vagally innervated
posterior epiglottis is elevated by the straight/Miller blade,
or the view is anatomically challenging, and more force is
used to displace the tongue; therefore, multiple attempts
may be required (5).

Numerous prophylactic techniques have been used to
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mitigate this stress response, such as the injection of local
anesthetics, opioids, beta-blockers, alpha 2 adrenergic ag-
onists, vasodilators, magnesium, and higher volatile anes-
thetic concentrations (6).

Fentanyl, a narcotic with rapid onset and short dura-
tion of action, is a component of balanced general anes-
thesia (GA) (7). Fentanyl may mitigate the hemodynamic
stress response by acting on the opioid receptors and low-
ering sympathetic output (8).

Midazolam has a rapid onset, but its relatively long
half-life can result in persistent sedation following its fre-
quent administration (9). The hemodynamic effects of mi-
dazolam include a slight decrease in systemic vascular re-
sistance, HR, and systemic blood pressure, and it is be-
lieved to preserve hemodynamic stability throughout the
intraoperative period (10).

Dexmedetomidine is a selective alpha-2 receptor ago-
nist with analgesic, sympatholytic, and sedative properties
without significant respiratory depression (11). It reduces
the need for opioids and decreases the stress response to
surgery with stable hemodynamics (12, 13).

In previous studies, dexmedetomidine reduced hemo-
dynamic changes during laryngoscopy and endotracheal
intubation (14, 15).

2. Objectives

We aimed to evaluate the hemodynamic stress re-
sponse mitigation provided by dexmedetomidine and
fentanyl-midazolam combination in patients undergoing
microlaryngoscopy.

3. Methods

This randomized, parallel, double-blind clinical trial
enrolled 60 patients (28 males and 32 females) aged 18 -
65 years, with the American Society of Anesthesiologists
(ASA) physical status I - III, who were scheduled for micro-
laryngoscopy. The study was conducted between March
29, 2021, and July 15, 2022. This study was approved by the
Institutional Review Board of Magrabi Eye, ENT, and Den-
tal Center, Doha, Qatar (code: MEEC-IRB-2021-103) and reg-
istered on the Iranian Registry of Clinical Trials website
(code: IRCT20210117050057N2). Written informed consent
was obtained from all patients.

The exclusion criteria were an allergic response to
drugs used in the trial, coronary artery disease, pulmonary
disease, arrhythmia, pregnancy, renal impairment, mor-
bid obesity, and emergency surgery.

3.1. Randomization and Blindness

Sixty patients were randomly classified into 2 groups
(group D and group MF) using a computer-generated se-
quence. The sequence was sealed in opaque envelopes.

Group D received 1 µg/kg of dexmedetomidine plus saline
bolus dose over 10 minutes before GA induction, followed
by 0.5 µg/kg/h dexmedetomidine plus saline infusions af-
ter GA induction. Group MF received 0.8 µg/kg of fentanyl
plus 0.05 mg/kg of midazolam over 10 minutes before GA
induction bolus dose, followed by 1µg/kg/h of fentanyl and
0.05 mg/kg/h of midazolam as an infusion after GA induc-
tion. Infusions were stopped at the end of the surgery.

The anesthesiologist and surgeon were blinded to the
study drugs, and the envelopes were opened immediately
before administration by a person who did not partici-
pate in the observation. The research solutions were for-
mulated by a devoted pharmacist without further involve-
ment in the trial. The intraoperative and postoperative
parameters were examined by a second anesthesiologist
who was blinded to the group assignment. Intravenous
(IV) propofol (2 - 2.5 mg/kg) and fentanyl (1 µg/kg) were ad-
ministered to induce GA until loss of eyelash reflex. Intra-
venous atracurium (0.5 mg/kg) was administered to facil-
itate endotracheal intubation. Intubation of the trachea
was performed using MLScopy tubes of sizes 5 and 5.5 un-
der direct laryngoscopy.

End-tidal sevoflurane 2% in 100% oxygen was used
for GA maintenance. Maintenance doses of 0.1 mg/kg
atracurium were given IV to immobilize the vocal cords.
Once hemodynamics returned to baseline, fixation of the
suspension laryngoscope was done.

Supplemental doses of IV propofol (1 mg/kg) were ad-
ministered whenever the HR or MAP was > 20% of the base-
line readings.

The bispectral index maintained between 45 and 60
was used to monitor the depth of anesthesia.

The total number of patients who required rescue anal-
gesics, such as propofol, and the total supplemental propo-
fol given were recorded.

When patients were able to reply to basic verbal in-
structions, extubation of the trachea was conducted after
the administration of lidocaine 4% spray and excluding
edema of the cord.

The Ramsay Sedation Score (RSS) was recorded 30 min-
utes after extubation. Patients received nasal O2 supple-
mentation after achieving full clinical stability.

The heart rate and MAP were measured at baseline, be-
fore induction, after induction, at intubation, 1, 2, 3, 5, and
10 minutes, and at the end.

Adverse events were recorded, including hypotension
(MAP < 20% of baseline was controlled using 5 mg of IV
ephedrine and/or normal saline IVI) and bradycardia (HR <
60 beats/min was controlled using 0.6 mg of IV atropine).

3.2. Sample Size Calculation

G*Power version 3.1.9.2 (Universitat Kiel, Germany) was
used to determine the sample size. We performed a pi-
lot study on 10 cases and found that the mean ± SD HR
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during intubation (our primary outcome) was 81.50 ± 8.87
beats/min in group D and 90.10 ± 8.03 beats/min in group
MF. In each group, 30 cases were recruited with a 1.01 ef-
fect size, 95% confidence limit, and 95% power, group ra-
tio 1:1; in addition, 6 cases were added to compensate for
dropouts.

3.3. Statistical Analysis

SPSS version 26 (SPSS Inc, Chicago, IL, USA) was used
for statistical analyses. The data distribution was normal
using the Shapiro-Wilk test and histograms. Quantitative
data are presented as mean and SD and were examined us-
ing the student t-test for unpaired samples. The chi-square
or Fisher exact test was used to analyze qualitative param-
eters expressed as frequencies and percentages. A 2-tailed
P-value less than or equal to 0.05 was considered statisti-
cally significant.

4. Results

Eighty-nine patients were eligible to participate in this
trial; however, 29 were excluded (18 did not meet the inclu-
sion criteria, and 11 refused participation). Therefore, 60
patients were analyzed and followed up (Figure 1).

The demographic data and duration of intubation and
surgery were not significantly different between the 2
groups. The type of surgery was comparable between the
2 groups. The time needed for extubation was comparable
between the 2 groups (Table 1).

Two (6.7%) and 10 (33.3%) patients required propofol in
groups D and MF, respectively. The intraoperative supple-
mental propofol ranged from 0 to 70 mg with a mean (±
SD) of 4.33 (± 16.54) mg in group D and from 0 to 80 mg
with a mean (± SD) of 22.33 (± 32.34) mg in group MF. The
number of patients who required propofol and intraop-
erative supplemental propofol was significantly lower in
group D than in group MF (Table 2).

In the same group comparison, HR and MAP were sig-
nificantly decreased at all measurement times compared
to baseline.

Group D had a reduction in HR from the start of the in-
fusion, which persisted until the end of surgery compared
with group MF (P = 0.022, 0.048, 0.032, 0.045, 0.041, 0.026,
0.030, and 0.036). The heart rate was comparable at base-
line and before induction in both groups (Figure 2).

MAP was comparable between the 2 groups from base-
line until the end of surgery (Figure 3).

The Ramsay Sedation Score 30 minutes after extuba-
tion was comparable in both groups (P = 0.552). Most pa-
tients in group D (80.0%) were cooperative, oriented, and
tranquil, and 20.0% responded to verbal commands (RSS
of 2 or 3), whereas 70.0% of patients in group MF were co-
operative, oriented and tranquil (RSS of 2), and 30.0% of pa-
tients had an RSS of 3 (Table 3).

Hypotension was observed in 7 (23.33%) patients in
group D and 3 (10%) patients in group MF. Bradycardia
was observed in 6 (20%) patients in group D and 4 (13.33%)
patients in group MF. Hypotension and bradycardia were
comparable between the 2 groups (Table 4).

5. Discussion

Microlaryngoscopy consists of a sequence of stress-
filled continuous suspension laryngoscopies that activate
the deep pressure receptors in the larynx (16). In high-
risk patients, uncontrolled hemodynamic changes during
laryngoscopy and intubation produce an increase in HR
and MAP, which can result in lethal arrhythmias and my-
ocardial ischemia (17).

Previous medications, such as lidocaine, propofol, es-
molol, and clonidine, have not been entirely effective due
to their numerous disadvantages (18). Several techniques
have been used to control hemodynamic response to sta-
bilize HR and MAP during laryngoscopy and preserve the
perfusion of the vital organs (19).

The stress response due to laryngoscopy and intuba-
tion can be effectively muted using dexmedetomidine.
Anesthetic sparing, opioid sparing, and blunting of ex-
cessive hemodynamic reactions during surgery were also
noted. Dexmedetomidine reduces the risk of adverse car-
diovascular reactions during laryngoscopy and intuba-
tion by reducing the release of stress hormones (nore-
pinephrine and cortisol) (20).

The present study aimed to evaluate the efficacy of
dexmedetomidine infusion in controlling hemodynamic
changes due to its central sympatholytic action, which is
responsible for these hemodynamic effects. Dexmedeto-
midine has a unique pharmacological profile that includes
sympatholytic, analgesic, opioid- and anesthetic-sparing
actions, and cardiovascular stability, with the added ben-
efit of preventing respiratory depression. Based on pre-
vious research, the loading dose of dexmedetomidine in
the present study was 1 µg/kg. (21, 22). Lower doses of
dexmedetomidine infusions are accompanied by recogni-
tion and recall (23).

Our findings confirmed that the number of patients
who required propofol and intraoperative supplemental
propofol was significantly lower in group D than in group
MF.

Basantwani et al. (16) conducted a study on 60 patients
undergoing elective microlaryngeal surgery to observe the
effect of dexmedetomidine bolus (1 µg/kg) and contin-
ued infusion (0.5 µg/kg), finding that the dexmedetomi-
dine group required less rescue analgesia than the placebo
group. Bajwa et al. (24) conducted a study on 100 pa-
tients scheduled to undergo elective general surgery and
observed that the dexmedetomidine group required lower
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Assessed for eligibility (n = 89)
Enrollment

Excluded (n = 29)

•  Not meeting inclusion criteria (n = 18)

•  Declined to participate (n = 11)

Randomized (n = 60)

Allocation

Follow-up

Analysis

Allocated to group D (n = 30)

•  Received 2 µg/kg dexmedetomidine over

    10 minutes before anesthesia induction

    followed by 0.05 mg/kg/h as infusion after

    anesthesia induction

•  Did not receive allocated intervention (n = 0)

Allocated to group MF (n = 30)

•  Received 0.8 µg/kg fentanyl plus 0.05 mg/kg

     midazolam (n = 30)

•  Did not receive allocated intervention (n = 0)

Last during follow-up (n = 0) Last during follow-up (n = 0)

Analyzed (n = 30)

•   Excluded from analysis (n = 0)

Analyzed (n = 30)

•   Excluded from analysis (n = 0)

Figure 1. CONSORT flow diagram of the enrolled participants

doses of rescue fentanyl to maintain intraoperative hemo-
dynamics. This may be related to the analgesic effects of
dexmedetomidine. The heart rate and MAP were signifi-
cantly decreased at all measurement times compared to
baseline in the same group comparison.

Our results were supported by those of the study
by Basantwani et al. (16), who observed the effect of
dexmedetomidine bolus (1 µg/kg) and continued infusion
(0.5µg/kg) on hemodynamic responses in microsurgery of
the larynx and found a decrease in HR from that at baseline
starting from loading dose infusion to the end of surgery.

Group D had a reduction in HR compared with group
MF from the start of the infusion, which persisted until the
end of surgery (P = 0.022, 0.048, 0.032, 0.045, 0.041, 0.026,
0.030, and 0.036). The heart rate was comparable between
the 2 groups at baseline and before induction. MAP was
comparable between the 2 groups from baseline until the
end of surgery. The Ramsay Sedation Score 30 minutes af-
ter extubation was comparable between the 2 groups (25).

In agreement with our results, Parikh et al. (26) ob-
served a greater reduction in HR and MAP with the use
of dexmedetomidine compared to midazolam-fentanyl

4 Anesth Pain Med. 2023; 13(3):e135276.
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Figure 3. The mean arterial blood pressure (mm Hg) of the studied groups

Anesth Pain Med. 2023; 13(3):e135276. 5



Oriby ME et al.

Table 1. Patient Characteristics and Duration of Surgery in the 2 Groups a

Variables Group D, (N = 30) Group MF, (N = 30) P-Value

Age (y) 44.07 ± 15.95 41.73 ± 14.76 0.559

Weight (kg) 63.67 ± 5.82 65.7 ± 5.42 0.167

Height (m2) 1.6 ± 0.07 1.59 ± 0.06 0. 361

BMI (kg/m2) 24.95 ± 3.31 26.19 ± 2.62 0.114

Sex 0.437

Male 12 (40) 16 (53.33)

Female 18 (60) 14 (46.67)

ASA physical status 0.568

I 8 (26.67) 6 (20)

II 16 (53.33) 20 (66.67)

III 6 (20) 4 (13.33)

Hypertension 6 (20) 8 (26.6) 0.761

DM 10 (33.33) 9 (30) 0.781

Duration of intubation (min) 31.43 ± 8.53 32.7 ± 7.99 0.555

Duration of surgery (min) 14.88 ± 6.69 13.45 ± 6.56 0.407

The time needed for extubation(min) 3.77 ± 1.04 3.37 ± 1.19 0.171

Type of surgery 0.869

Diagnostic 19 (63.33) 17 (56.67)

Therapeutic 6 (20) 7 (23.33)

Laser 5 (16.67) 6 (20)

Abbreviations: BMI, body mass index; ASA, American Society of Anesthesiologists; DM, diabetes mellitus.
a Data are presented as mean ± SD and frequency (%).

Table 2. Rescue Sedation Propofol of the 2 Groups a

Variables Group D, (N = 30) Group MF, (N = 30) P-Value

No. of patients required propofol 2 (6.7) 10 (33.3) 0.021

Total supplemental propofol (mg) 4.33 ± 16.54 22.33 ± 32.34 0.008

a Data are presented as mean ± SD and frequency (%).

Table 3. The Ramsay Sedation Scale at 30 Minutes After Extubation in the 2 Groups

Variables Group D, (N = 30) (%) Group MF, (N = 30) (%) P-Value

1. Anxious or restless or both 0 (0.0) 0 (0.0)

0.552

2. Cooperative, oriented, and tranquil 21 (70.0) 24 (80.0)

3. Responding to verbal commands 9 (30.0) 6 (20.0)

4. Brisk response to stimulus 0 0

5. Sluggish response to stimulus 0 0

6. No response to stimulus 0 0

during tympanoplasty. This decrease in HR may be at-
tributable to the vasoconstrictive effect of dexmedetomi-
dine mediated by the 2-B receptors, which occurs prior to
the central sympatholytic effect (27). Several investigators

have utilized 0.5 - 1 µg/kg of dexmedetomidine to prevent
the stress response related to intubation (6, 28, 29).

Kumari et al. (30) found that dexmedetomidine con-
siderably attenuated the increase in hemodynamics until 5

6 Anesth Pain Med. 2023; 13(3):e135276.
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Table 4. Adverse Effects Occurred in the 2 Groups

Variables Group D, (N = 30) (%) Group MF, (N = 30) (%) P-Value

Hypotension 7 (23.33) 3 (10) 0.299

Bradycardia 6 (20) 4 (13.33) 0.730

minutes after intubation, lowered the propofol induction
dose, and produced fewer side effects.

A previous study (31) investigated the impact of
dexmedetomidine and saline on the hemodynamic re-
sponse, reporting that dexmedetomidine significantly
decreased MAP and HR compared to saline, possibly be-
cause dexmedetomidine affects the stress response by
inhibiting the production of stress hormones, such as
norepinephrine and cortisol. Jaakola et al. (32) also con-
cluded that dexmedetomidine prevents increases in HR
and MAP during intubation.

Previous studies have confirmed our results that
dexmedetomidine reduces the stress-induced sympathoa-
drenal responses elicited by tracheal intubation. Infusions
with varying doses of dexmedetomidine were used for this
purpose in these trials (33, 34).

This trial had some limitations. First, this was a single-
center study with a small sample size that was conducted
to prove our secondary outcomes. Second, we did not in-
clude a placebo group in this study. Further studies are
needed to investigate the effects on hypertensive or cardiac
patients and measure plasma catecholamine levels to as-
sess the hemodynamic changes.

5.1. Conclusions

Dexmedetomidine mitigates the hemodynamic
changes related to laryngoscopy and intubation more
efficiently than a combination of fentanyl and midazolam.
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