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Abstract

Background: Open heart surgeries are a common surgical approach among patients with heart disease. Acute kidney injury

(AKI) is one of the most common postoperative complications following cardiac surgeries, with an average incidence of 6 - 10%.

Additionally, AKI has a mortality rate of 5 - 10%. One of the challenges of cardiac surgeries is selecting the appropriate anesthetic

approaches to reduce the risk of AKI.

Objectives: This study presents a machine learning-based method that consists of two regression models. These models can

inform the anesthesiologist about the risk of AKI resulting from the improper selection of anesthetic parameters.

Methods: In this cohort study, the medical records of 998 patients who underwent cardiac surgery were collected. The proposed

method includes two regression models. The first regression model recommends optimal anesthesia parameters to minimize

the risk of AKI. The second model provides the anesthesiologist with the safest margin for deciding on anesthetic parameters

during surgery, including cardiopulmonary bypass (CPB) time, anesthesia time, crystalloid dose, diuretic dose, and transfusion

of packed red cells (PC) and fresh frozen plasma (FFP). Using this method, the specialist can evaluate the anesthetic parameters

and assess the potential AKI risk. Additionally, the proposed method can also provide the treatment team with anesthetic

parameters that carry the lowest risk of AKI.

Results: This method was evaluated using data from 526 patients who suffered from postoperative AKI (AKI+) and 472 who did

not suffer any injury (AKI-). The accuracy of the proposed method is 80.6%. Additionally, the evaluation of the proposed method

by three experienced cardiac anesthesiologists shows a high correlation between the results of the proposed method and the

opinions of the anesthesiologists.

Conclusions: The results indicated that the outputs of the proposed models and the designed software could help reduce the

risk of postoperative AKI.
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1. Background

The rate of cardiac surgeries is increasing due to a

rise in the average age of populations in communities

and the need to address complications of aging,

including cardiovascular disease (1). Open heart

surgeries are complex and time-consuming procedures

(2). Additionally, acute kidney injury (AKI) is one of the

most critical postoperative complications that can

occur after heart surgery for various reasons, including

a higher possibility of AKI risk factors in patients

undergoing cardiac surgeries (3).

Risk factors for AKI include the coexistence of

conditions such as diabetes, hypertension, and
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advanced age (4). Furthermore, other factors leading to

AKI are exclusively related to anesthesia, surgical

procedures, and patient management in the intensive

care unit. The unique aspects of heart surgeries closely

related to this complication include the use of a

cardiopulmonary pump, aortic cross-clamp, and large-

volume blood transfusions (5). Acute kidney injury is

characterized by an increase in serum creatinine, a

decrease in absolute urine output, or both, based on

which three different definitions of AKI have been

developed (Table 1) (5).

Table 1. Patients Characteristics Before Cardiac Surgery a

Variables Values

Age  b 57.44 ± 11.40 (18 - 85)

Patient Specific Features
Gender 598 (59.92)

Male

Female 400 (40.08)

BMI  b (kg/m 2) 26.76 ± 3.04 (17 - 41)

Surgery

CABG 653 (65.43)

VALVULAR 177 (17.73)

TRANSPLANT 16 (1.60)

AORTIC surgeries 55 (5.51)

REDO 1 (0.10)

Mixed types 90 (9.01)

Missing values 6 (0.62)

Type
Elective 825 (82.66)

Emergency 171 (17.13)

Missing values 2 (0.21)

Past Medical History (PMH)
HTN

Positive 715 (71.64)

Negative 283 (28.36)

DM

Positive 509 (51)

Negative 488 (48.89)

Missing values 1 (0.11)

CKD

Positive 154 (15.43)

Negative 843 (84.46)

Missing values 1 (0.11)

PHTN
Positive 425 (42.58)

Negative 570 (57.11)

Missing values 3 (0.31)

COPD
Positive 171 (17.13)

Negative 827 (82.87)

Stenting
Positive 323 (32.36)

Negative 675 (67.64)

CVA
Positive 122 (12.03)

Negative 878 (87.97)

3VD
Positive 650 (65.13)

Negative 348 (34.87)

Drug History (DH)
ACEI

Positive 439 (43.98)

Negative 559 (56.02)

ARB
Positive 393 (39.37)

Negative 600 (60.12)

Missing values 5 (0.51)

BB

Positive 816 (81.76)

Variables Values
Negative 182 (18.24)

Diuretics
Positive 608 (60.92)

Negative 390 (39.08)

CCB  b

Positive 291 (29.15)

Negative 707 (70.85)

Statin

Positive 880 (88.17)

Negative 112 (11.22)

Missing values 6 (0.61)

ASA

Positive 894 (89.57)

Negative 105 (10.43)

NSAIDs

Positive 96 (9.61)

Negative 902 (90.39)

Laboratory Parameters (LAB)

EF 48.05 ± 9.54 (10 - 66)

Cr  b (mg/dL) 1.24 ± 0.80 (0.5 - 12)

Alb  b (g/dL) 3.85 ± 0.66 (1.8 - 6.8)

BS  b (mg/dL) 162.03 ± 53.4 (77 - 425)

HbA1C  b (mmom/mol) 6.16 ± 1.19 (3.7 - 12)

Hct  b 39.34 ± 4.10 (23 - 56)

Abbreviations; BMI, Body Mass Index; CABG, coronary artery bypass grafting

surgery; PMH, past medical history; HTN, hypertension; DM, diabetes mellitus; CKD,

chronic kidney disease; PHTN, pulmonary hypertension; COPD, chronic obstructive

pulmonary disease; CVA , cerebrovascular accident; 3VD, three vessels disease; DH,

drug history; ACEI, angiotensin convertase enzyme inhibitor; ARB, angiotensin

receptor blocker; BB, beta blocker; CCB, calcium channel blocker; ASA, acetylsalicylic

acid; NSAIDs, nonsteroidal anti-inflammatory drugs; EF, ejection fraction; Cr,

creatinine; Alb, albumin; BS, blood sugar; Hb A1C, glycated hemoglobin; Hct,

hematocrit.

a Values are expressed as No. (%) or mean ± SD (range).

b Selected features.

In coronary artery bypass grafting (CABG) surgery, a

cardiopulmonary bypass pump is attached to the

patient's main arteries and veins to act as the heart and

lungs, delivering blood to different body parts and

removing carbon dioxide from the blood. However,

when the machine connects to the heart's arteries,

blood flow to other parts of the body briefly stops,

potentially reducing the glomerular filtration rate (GFR)

of the blood and leading to postoperative AKI (6). Other

factors contributing to AKI during cardiopulmonary

bypass include changes in kidney vascular tone, blood

interaction with artificial surfaces, and activation of the

systemic inflammation cascade (5).

The average incidence of AKI after heart surgery is

between 6 - 10%, with a corresponding mortality rate of 5

- 10% (6). However, a 2019 study reported this rate as high

as 30% (5). About 3.1% of patients with postoperative AKI

in recent years have required dialysis (7). The need for

dialysis and renal replacement therapy (RRT), long-term

hospitalization, and increased mortality rates are

significant long-term consequences of AKI (5). The
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highest mortality rate due to kidney injury occurs in

those over the age of 66, with an average rate globally in

2019 of about 6% (7).

Machine learning has been increasingly utilized in

medical procedures across various fields (8, 9), and its

applications in anesthesiology are expanding (10).

Several studies have explored the use of artificial

intelligence and machine learning methods to predict

postoperative kidney injury. Rank et al. (11) introduced a

deep learning method for predicting kidney injury after

heart surgery. In this method, 96 important medical

data points were collected from 15,564 patients, and the

recurrent neural network (RNN)-based model achieved

an area under the curve (AUC) of 0.893, significantly

higher than the clinical accuracy of 74.5%. Additionally,

the preoperative data were sequenced, and the time

series method along with RNN was used to predict

postoperative kidney injury. Furthermore, Thottakkara

et al. (12) achieved an AUC of about 0.858 - 0.797 using

logistic regression and support vector machine (SVM)

methods on over 50,000 samples, demonstrating that

the model performs well in predicting the occurrence of

postoperative kidney injury. Moreover, Wei et al. (13)

assessed the increasing severity of kidney injury based

on logistic regression models and extreme gradient

boosting (XGBoost) using data from 25,711 patients.

Kidney injury severity is expressed as an integer from 0 -

3, where zero indicates no injury and three indicates the

most severe injury. The following sections will detail

how the severity of kidney injury is determined. Wei et

al. identified patients whose kidney injury severity

increased from stage 1 and 2 to stage 3 over time. Using

the XGBoost model on the problem data (13), achieved

higher accuracy than the logistic regression model (AUC

= 0.926).

Research in this field is divided into predicting the

occurrence or non-occurrence of kidney injury after

cardiac surgery and the severity of kidney injury among

patients over time. In the first category, the primary

purpose of the studies is to predict whether kidney

injury occurs after heart surgery. Koyner et al. achieved

an AUC of 0.90 in predicting level 2 kidney injury (14). In

another study, Tseng et al. designed various models such

as logistic regression, random forest, SVM, XGboost, and

ensemble learning on data from 671 patients. Ultimately,

the Ensemble model (RF + XGboost) was selected as the

best method for predicting postoperative AKI, achieving

an AUC of 0.843 (15). Barton et al. used ensemble boosted

decision trees to design a model based on data from

over 300,000 samples, which achieved an AUC of 0.8

(0.809-0.792) (16). In another study, Lee et al. used

feature selection methods and machine learning

algorithms to obtain different accuracy values for the

postoperative AKI prediction problem, among which

the logistic regression method, based on data from 889

patients, achieved an AUC of 0.93 using the Monte Carlo

cross-validation method (17, 18). Furthermore, Ghosh et

al. applied a Gradient Boost method on data from 98,472

patients who underwent heart surgery from 2005 to

2017, achieving an AUC of 0.690 (0.697 - 0.682). The

constructed model included 30 patients' preoperative

and intraoperative features (19).

The second category of studies examines the

increasing severity of kidney injury in patients over

time.

2. Objectives

In the current study, the severity of the patient's

kidney injury on the first and seventh days after heart

surgery was determined by measuring the patient's

blood creatinine (Cr) levels and comparing them with

preoperative levels. Considering the registered

preoperative features of the patient, intraoperative

anesthesia parameters, and the severity of the patient's

kidney injury on the first and seventh days post-surgery,

this study aims to suggest intraoperative anesthesia

procedures for new patients to minimize the risk of

postoperative kidney injury. Therefore, we divided the

problem data into two categories based on the presence

of kidney injury in patients and predicted the

anesthesia measures during the operation in each

group using a regression model. The low-risk and high-

risk anesthesia approaches predicted by the two

regression models are determined for each patient. The

goal is to use low-risk values for the anesthesia

parameters during the operation and consider a safety

margin to avoid the high-risk values to minimize the

risk of postoperative AKI.

3. Methods

3.1. An Overview of the Proposed Method

The present study aims to design an intelligent

assistant for cardiac anesthesiologists to determine

appropriate intraoperative measures for anesthesia.
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Determining the intraoperative parameters of

anesthesia is always challenging for physicians due to

the long duration of cardiac surgery, its high sensitivity,

and the possibility of postoperative kidney injury. This

study proposed a model using machine learning

techniques to determine intraoperative anesthesia

parameters so that the patient suffers the least

postoperative kidney injury. The patients were divided

into AKI+ and AKI- groups to design this model. A

regression model was developed and trained on data

from each group individually. The presence of these two

regression models allows the cardiac anesthesiologist to

be aware of the optimal parameters of anesthesia and

the high-risk values for these parameters to avoid their

selection. Each model received the eight preoperative

features of patients, including age, body mass index

(BMI), use of calcium channel blockers (CCB), serum

creatinine, serum albumin (Alb), blood sugar (BS),

glycosylated hemoglobin (HbA1C), and hematocrit (Hct),

which were recorded preoperatively as input to predict

six critical parameters of intraoperative anesthesia.

These parameters include cardiopulmonary bypass

(CPB) time, anesthesia time, crystalloid dose, dose of

diuretic, transfusion of packed red cells (PC), and fresh

frozen plasma (FFP). The overall structure of the

proposed model for reducing AKI risk is depicted in

Figure 1.

Figure 1. The Overall structure of the machine learning model for predicting
optimal anesthesia parameters

The proposed method consists of two separate

regressions. After receiving information about the eight

features of patients in the AKI- group, the first

regression suggests six measures related to

intraoperative anesthesia that present the lowest risk of

AKI for the patient (Figure 1). In other words, when

considering these six parameters during surgery, the

possibility of AKI is minimized for the patient. The

second regression supports the first by using data from

the AKI+ group to establish a safety margin for deciding

on anesthesia procedures. Essentially, this second

regression aims to inform the anesthesiologist about

the high-risk anesthesia procedures for AKI by learning

from the AKI+ samples. By integrating the

recommendations of these two regressions, the

proposed model strives to suggest the least risky

method of anesthesia for the patient. The main steps of

the proposed method are explained in more detail

below.

3.2. Data Collection

The data from 998 adult patients, including 598 men

and 400 women who underwent open cardiac surgeries

at Imam Hossein, Shahid Modarres, and Masih

Daneshvari hospitals in Tehran, were included in this

study. The exclusion criteria were non-adult patients.

The final dataset included data from 526 patients with

kidney injury after cardiac surgery and 472 patients

without kidney injury, which were used in a ratio of 85

to 15 for training and testing data, respectively.

According to the literature (20), the rules of thumb for

machine learning studies suggest determining the

sample size at 50 to 1000 times the number of predicted

classes or 10 to 100 times the number of studied

features. In addition to following these guidelines, the

opinions of experienced anesthesiologists and pilot

investigations have also been considered in

determining the sample size.

3.3. Selecting Patients’ Preoperative Features

In the problem data for each patient, 27 different

features were recorded, which constitute the patient’s

preoperative data. These features are categorized into

four groups: Patient demographics, past medical history

(PMH), drug history, and laboratory features (Table 1).

Due to the small volume of the problem data and the

high number of patient features, building a machine

learning model and training it with the data is

challenging. Therefore, using the XGboost method (4),

the authors identified the most important features for

the present study, including serum creatinine (Cr),

blood sugar (BS), albumin (Alb), glycosylated

hemoglobin (HbA1C), age, body mass index (BMI),

hematocrit (Hct), and calcium channel blockers (CCB).
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3.4. Selecting Intraoperative Features of Anesthesia

The designed model aims to recommend specialist

intraoperative anesthesia procedures to minimize

postoperative kidney injury. Due to the limited amount

of data, the XGboost method (4) and guidance from

anesthesiologists were used to select the six most

important anesthesia parameters for designing the

machine learning model. These features include

Anesthesia Time, CPB Time, Dose of Diuretic, Crystalloid

Dose, and transfusion of Packed Cells (PC) and Fresh

Frozen Plasma (FFP) (Table 2).

Table 2. Anesthesia Parameters During Cardiac Surgery

Variables Frequency (%) Range Mean ± SD

Anesthesia time (min) 130 - 160 346.81 ± 71.29

Crystalloid dose (lit) 1 - 2 1.49 ± 0.03

Dose of diuretic (mg/dL) 20 - 180 26.76 ± 3.04

PC transfusion

Positive 582 (58.31)

Negative 409 (40.98)

Missing values 7 (0.71)

FFP transfusion

Positive 487 (48.87)

Negative 506 (50.70)

Missing values 5 (0.43)

CPB time (min) 53 - 350 112.44 ± 32.33

Abbreviations: Anesthesia time, anesthesia duration in cardiac surgery;

Crystalloid, amount of injected crystalloid drug during surgery; dose of Diuretic,

two different dose of two different diuretics; PC, packed red cells; FFP, fresh frozen

plasma; CPB time, cardiopulmonary bypass time.

3.5. Designing the Learning Model of Anesthesia Design
Machine

The proposed model consists of three main

components: AKI- Planner, AKI+ Planner, and AKI Risk

Visualizer. The first two components are trained using

AKI- and AKI+ samples, respectively. In the problem data,

two labels, Cr-1 and Cr-7, indicate the patient's serum

creatinine on the first and the seventh day after surgery,

respectively. Using these values along with the serum

creatinine level before surgery, postoperative injury is

determined by an integer between zero and three,

where zero indicates no injury and three indicates the

highest level of injury. In this study, individuals who did

not suffer any kidney injury on the first and the seventh

day post-surgery were categorized in the AKI- group,

while those who did were placed in the AKI+ group. The

severity of kidney injury is determined based on the

Kidney Disease Improving Global Outcomes (KDIGO)

classification criterion (21), as detailed in Appendix 1.

Each component is explained in detail in the following

subsections.

3.6. AKI- Planner Component

This component utilizes eight important

preoperative data points to determine six anesthesia

parameters that minimize the patient's AKI risk. The AKI-

Planner component is designed as a regression model

using a three-layer neural network (Appendix 2). The

output of the neural network corresponds to

appropriate intraoperative anesthesia measures that

carry the lowest risk of AKI. The AKI- Planner neural

network is trained exclusively on data from members of

the AKI- group. Consequently, the AKI- Planner aims to

recommend to the anesthesiologist the optimal

parameters to reduce the risk of AKI by analyzing the

new patient’s features.

3.7. AKI+ Planner Component

This essential component has a structure similar to

the AKI- Planner component. Like its counterpart, this

component is a three-layer neural network with the

same specifications (Appendix 2). Specifically, the AKI+

component predicts six high-risk anesthesia parameters

of AKI by analyzing eight preoperative features of

patients. This component supplements the first,

providing critical information to the anesthesiologist. If

the output from the AKI- Planner neural network is used

solely in constructing the model, there is a risk that the

anesthesia parameters proposed by the AKI- Planner

may be close to values that carry a high risk of kidney

injury. The AKI+ neural network is trained using data

from 526 patients in the AKI+ group. Therefore, the

output of the AKI+ Planner network should be

considered in conjunction with the AKI- Planner

network to avoid risky anesthesia parameters by

determining the best anesthesia measures. This network

is designed to assess the safety margin in decision-

making for anesthesia procedures.

3.8. AKI Risk Visualizer Component

The AKI-Planner component determines six output

parameters by receiving eight inputs before surgery and

informs the anesthesiologist of the optimal anesthesia
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measures to reduce the risk of AKI. Additionally, this

study aims to help anesthesiologists understand the

intraoperative risk associated with selecting certain

parameters. Consequently, software was developed to

measure and compare the distance between the chosen

anesthesia methods and the outputs of the AKI- Planner

and AKI+ Planner models, as assessed by three expert

cardiac anesthesiologists. Furthermore, the software

plots these two distances on a graph, allowing the

physician to assess the AKI risk associated with any of

these values by examining the various settings and

options of anesthesia procedures. The developed

software is capable of performing the following

activities:

(1) Receiving the patient’s information.

(2) Receiving the anesthesia parameters considered

by the physician and applying changes to them.

(3) Displaying the proposed anesthesia parameters

from the AKI- Planner model and the risks associated

with selecting them.

(4) Displaying the AKI risk caused by selecting

different anesthesia parameters.

(5) Calculating the distance from the anesthesia

parameters considered by the physician to the outputs

of the AKI- Planner and AKI+ Planner models.

Figure 2 illustrates the environment of the developed

software.

Figure 2. The environment of the developed simulator software

4. Results

4.1. Determining the Kidney Injury Label of Data Samples

In this section, the severity of postoperative kidney

injury on the first and seventh days is determined

(Appendix 1). Any patient who has suffered kidney injury

on at least one of these days after surgery is placed in

the AKI+ group. Conversely, patients who did not

experience kidney injury on these days are placed in the

AKI- group. Table 3 provides information on the dataset,

including the number of training and test data.

Table 3. Dividing Dataset to the Train and Test Sets a

Variables No. of Samples Training Set (85%) Test Set (15%)

Dataset 998 848 150

AKI- 472 (47.29) 401 71

AKI+ 526 (52.71) 447 79

a Values are presented as No. (%).

4.2. Experimental Results

As mentioned in the previous section, the proposed

method includes two models: The AKI+ Planner and the

AKI- Planner. The AKI+ Planner model is trained based on

the AKI+ group, while the AKI- Planner model is trained

based on the AKI- group (Figure 3A).

Figure 3. Predicting anesthesia parameters on (A) test and (B) train data and
comparison with the output of AKI+ and AKI- models

The data for the AKI+ group is often below the y = x

line. In other words, the anesthesia parameters set by

three expert cardiac anesthesiologists for individuals

with postoperative kidney injury are closer to the

output of the AKI+ model, indicating that this model

accurately predicts high-risk AKI parameters.

Conversely, the samples from the AKI- group are often

above the y=x line, suggesting that most individuals

without kidney injury are operated on with anesthesia

parameters considered appropriate by the AKI- neural

network. The results of the model prediction on

training data are shown in Figure 3B, demonstrating the

acceptable accuracy of the models in predicting
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anesthesia parameters. Additionally, Appendix 3

presents the results of the proposed models on the test

dataset.

As illustrated in Figure 3A, the green and red points

represent samples from the AKI- and AKI+ groups,

respectively. To evaluate the accuracy of the model,

samples were assumed to be predicted negative above

the y = x line and predicted positive below the y = x line.

Appendices 4 and 5 display the confusion matrix of the

designed models on the training and test data.

Table 4 also presents the performance evaluation

metrics of the designed model on the dataset.

Table 4. Evaluation Metrics for the Model on Train and Test Set

Variables Precision Recall Accuracy F1-Score

Train set 0.806 0.785 0.787 0.795

Test set 0.797 0.848 0.806 0.821

The best performance of the models occurred when

the AKI- network predicted the largest number of

samples above the y = x line, and the AKI+ network

predicted the largest number of samples below the

same line. Consequently, an accuracy of 80.6% was

achieved in measuring the performance of the models.

4.3. Evaluation of the Proposed Method by Anesthesiologists

To evaluate the output quality of the proposed

models, a study was organized for cardiac

anesthesiologists by presenting the features of 60

patients undergoing cardiac surgery alongside three

different approaches. The study involved three expert

cardiac anesthesiologists: A professor with over 20 years

of experience in research and treatment, an assistant

professor with over 15 years of experience, and a cardiac

anesthesiologist with three years of experience in the

field. The specialists were asked to select one of the three

treatment methods for each patient based on the

parameters related to the patient's medical and

pharmacological history. Thirty of these patients had

postoperative AKI, while the other 30 did not suffer any

injuries. To determine the treatment options presented

to the specialists, we clustered the patients according to

their intraoperative anesthesia parameters. Three

clusters were then selected: Two containing low-risk

anesthesia parameters and one containing high-risk

parameters. The k-means clustering method was used to

determine these clusters (22, 23). The features of the

three cluster centers, designed as survey options, are

depicted in Table 5.

Table 5. The Candidate Treatment Methods by Running K-means Clustering
Algorithm on Anesthesia Parameters

Variables Treatment
Method 1

Treatment
Method 2

Treatment
Method 3

Anesthesia time (min) 340 - 350 360 - 400 330 - 340

CPB time (min) 110 - 120 130 - 140 100 - 110

Dose of diuretic
furosemide (milligram)

20 - 40 40 - 60 20-30

Crystalloid dose (liter) 1 - 2 2 - 3 1 - 2

Pc Received Not Received Received

Ffp Not Received Received Received

Since three specialists were involved, the majority

vote was considered for each patient as their proposed

treatment. Additionally, 30 patients were in the AKI+

group, while the other 30 were in the AKI- group. For

each patient, the specialists' majority vote was

determined, and the suggested treatment option was

classified as belonging to either the AKI+ or AKI- groups

based on this vote. A confusion matrix can be presented

by considering the patient's postoperative kidney injury

condition and the specialists' recommended treatment

(Appendix 6).

The distance between the anesthesia parameters in

the patient data file and the output of the two designed

planners was calculated. Subsequently, a point in the

coordinate space was obtained, indicating the accuracy

of the developed models. The accuracy of the designed

model is higher in determining the appropriate

intraoperative parameters of anesthesia as the point

rises above the y=x line. A method was then proposed to

measure the model's efficiency. For each patient, six

parameters of intraoperative anesthesia, representing

the majority vote of the specialists, were selected. The

distance between this vector and the output of the two

AKI+ and AKI- Planner components was measured. The

position of the new point on the coordinate screen was

then compared with that of the previous point,

indicating the distance between the treatment the

patient received and the output of the AKI+ and AKI-

Planner models. If the point shifted to the area above

the y = x line, the proposed model's predicted values for

anesthesia parameters were more accurate and carried a

lower AKI risk compared to the method with which the

patient was anesthetized. Figure 4 presents a schematic

of the proposed method. As shown, the points R1 =

(d1_h, d1_p) and R2 = (d2_h, d2_p) represent the
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distance between the performed treatment and the

proposed treatment of the model with the output of the

two regressions, respectively.

Figure 4. Comparing the risk of anesthesia parameters determined for surgery
using the proposed parameters by the model

Appendix 7 displays the flowchart for the movement

of points on the screen. Blue points represent test data

that turned green after applying the specialists’

evaluations on anesthesia parameters. Furthermore,

most of the points moved above the y = x line, indicating

the acceptable accuracy of the model for use as an

intelligent assistant by anesthesiologists.

4.4. Anesthesia Management Recommender Software

The software functions such that an anesthesiologist

can view the AKI risk associated with selecting certain

parameters on the AKI plot when they enter patient

information, including medical and pharmacological

records along with intraoperative anesthesia

parameters, into the software environment (Appendix

8). Additionally, data from several patients with medical

and pharmacological records similar to the current

patient are displayed on the AKI plot. This allows the

specialist to intuitively understand the intraoperative

anesthesia parameters, observe which anesthesia

parameters were used for patients similar to the current

one, and be aware of their surgery AKI risk. This software

features a slider for each anesthesia parameter, allowing

adjustments to the parameter values. Appendices 7 and

5 present information about one of the patients and his

AKI risk due to the selection of different anesthesia

parameter values, represented by a blue point.

Moreover, the blue point moves within the coordinate

space as the parameter values are adjusted.

The specialist can manipulate the blue point

representing the AKI risk so that it reaches above the y =

x line by evaluating different settings of anesthesia

parameters. In this scenario, the intraoperative

anesthesia parameters carry a relatively low risk of AKI.

Figure 5 illustrates a group of anesthesia parameters

that the patient underwent, categorized under the AKI+

risk by the proposed method. The AKI risk of selecting

these values is represented by a point near the y = x line,

indicating that the chosen values for the intraoperative

anesthesia parameters are not considered risky.

However, due to the presence of many red points

around this one, it cannot be deemed low risk. By

changing the values of the anesthesia parameters, the

AKI risk changes, and the blue point on the chart shifts.

Two different boxes are highlighted in red and green

(Figure 5). The high AKI+ risk box indicates the high-risk

values of the intraoperative anesthesia parameters,

selecting which causes the blue point to move below the

y = x line. Consequently, using these values will increase

the risk of postoperative AKI. Conversely, the Low AKI+

Risk box displays the low-risk values for the anesthesia

parameters. In other words, if the desired blue point is

above the y = x line after altering the intraoperative

anesthesia parameters, the specified anesthesia

parameters are considered low-risk and can reduce the

postoperative AKI risk.

Figure 5. Changes in the risk of AKI due to choosing different set of values for
anesthesia parameters

5. Discussion

Cardiac surgeries are associated with postoperative

AKI for various reasons. AKI may occur due to reduced

kidney perfusion pressure after the patient is connected

to a cardiopulmonary bypass pump. Other contributing

factors include changes in kidney vascular tone,
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activation of the systemic inflammatory response, blood

contact with the artificial surfaces of the bypass circuit,

and the production of microemboli, which can result in

AKI, potentially leading to the need for dialysis. The

incidence of AKI following cardiac surgery is 30%, while

the average rate of dialysis in patients after these

surgeries is 4% (5). The long-term consequences of AKI

after cardiac surgery include chronic kidney failure,

decreased quality of life, increased risk of cardiovascular

incidents, and increased mortality rates, such that even

very low levels of increase in serum creatinine (0.3-0.5

mg/dL) are associated with a marked increase in 30-day

mortality. Using renal replacement therapy (RRT) in the

postoperative period is one method that increases the

hospital survival rate of patients with AKI (5). However,

AKI requiring RRT is associated with a 50% mortality rate

(O’Neal, Shaw, & Billings, 2016). Additionally, this

method increases the cost of the patient's treatment by

an average of $3629 per year (24). As mentioned in

previous sections regarding the costs of hospitalization

and treatment of patients with kidney injury, the cost

imposed on these patients accounts for a significant

percentage of the healthcare budget in each country

(25).

Beyond the medical and treatment costs, there are

various costs in the medical education department for

training cardiac anesthesiologists. Despite using their

skills during anesthesia in heart surgery, there is always

a high risk of postoperative kidney injury. Designing an

intelligent assistant to determine the intraoperative

parameters of anesthesia can significantly advance their

medical goals and reduce various costs, including those

associated with postoperative treatment, kidney injury

in the patient, and the training and education of

specialists.

5.1. Conclusions

In the present study, a model based on machine

learning techniques was developed to inform

anesthesiologists of the AKI risk associated with

different methods of intraoperative anesthesia. This

model comprises the AKI+ Planner, AKI- Planner, and AKI

Risk Visualizer, each designed to identify optimal and

high-risk anesthesia parameters. The components of the

AKI+ Planner and AKI- Planner were separately trained

on AKI+ and AKI- samples, achieving accuracies of 78.7%

and 80.6% on the training and test data, respectively.

These results indicate the acceptable performance of the

proposed method. Additionally, a multiple-choice

questionnaire was designed to more accurately gauge

the model's performance, during which expert

anesthesiologists recommended treatments for 60

patients. This process demonstrated that the developed

model predicts optimal surgical parameters with higher

accuracy when comparing the specialists' opinions with

the treatments actually administered to patients.

Furthermore, software was developed to serve as an

intelligent assistant for anesthesiologists in

determining intraoperative anesthesia parameters. This

tool allows them to evaluate various anesthesia

parameters and assess the AKI risk. In future studies, the

authors plan to enhance the accuracy of the designed

model by expanding the dataset and the team of

experts. Finally, other methods could be explored to

combine the results of the two regression models and

further improve the proposed method.

Supplementary Material
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supplementary materials, please refer to the journal
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