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Attenuation of Cisplathin-Induced Toxic Oxidative Stress by Propofol
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Background: Antioxidant effects of propofol (2, 6-diisopropylphenol) were evaluated against cisplatin-i nduced oxidative stress in rat.
Objectives: In this experimental study, 20 male rats were equally divided into 4 groups (5 rats each), and were treated by propofol (10 mg/
kg/day, IP), or cisplatin (7 mg /kg/day, IP), or both.
Materials and Methods: G roup one was control, while group 2 was given cisplatin (7 mg /kg/day, IP). Animals of the third group received 
only propofol (10 mg/kg/day, IP). Group 4 was given propofol with cisplatin once per day for 7 days. After treatment, blood urea nitrogen, 
creatinine levels, and oxidative stress m arkers such as total thiol groups (TTG), lipid peroxidation (LPO), and total antioxidant  capacity 
(TAC) were measured.
Results: Oxidative stress induced by cisplatin, was evident by a significant increase in LPO and decrease in TTG and TAC. Propofol recovered 
 cisplatin -induced changes in TAC, TTG and LPO in blood.
Conclusions: It is concluded that oxidative  damage is the mechanism of cisplatin toxicity, which can be recovered by propofol. 
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1. Background
In the treatment of malignancy and solid tumors, cis-

platin acts as a strong anti-tumor compound. However, 
the chemotherapeutic property of cisplatin is limited 
because of its severe side effects such as ototoxicity and 
n ephrotoxicity, which leads to decrease in cisplatin us-
age (1-3). Furthermore, cisplatin decreases antioxidant 
power in chemotherapy, as antitumor drugs induce 
production of free-radicals (4, 5).  In previous studies, 
cisplatin-i nduced nephrotoxicity is strongly associated 
with increase in lipid peroxidation in k idney tissues 
(6). Propofol (2,6-diisopropylphenol) is a widely used 
intravenous sedative-hypnotic agent for both induction 
and maintenance of anesthesia and sedation in criti-
cally ill patients (7). Structure of the propofol contains 
a phenolic hydroxyl group and thus resembles that 
of α-tocopherol (vitamin E), a natural antioxidant. As 
shown by both in vitro and in vivo studies, the antioxi-
dant activity of propofol results partly from this pheno-
lic chemical structure (8).

 Some studies have demonstrated antioxidant effects 
of propofol in vitro (9, 10) and some in vivo (11). However, 
propofol affects differently on different cells, and mul-
tiple mechanisms may be involved (12) in that. On the 
other hand, it has been reported that the antioxidant 
properties of propofol not only inhibit lipid peroxida-

tion, but also scavenger and remove ROS that have been 
formed (8). Previous studies showed that induction of 
nephrotoxicity in cisplatin exposure is strongly associ-
ated with lipid peroxidation induction in kidney tissues 
(13). Recently, nephrotoxicity of cisplatin is controlled by 
sulforaphane through inhibition of antioxidant enzymes 
and decrease in oxidative or nitrosative stress (2, 14). 

2. Objectives
In the present study, we investigated antioxidant prop-

erties of propofol on nephrotoxicity in rats treated with 
cisplatin. 

3. Materials and Methods 
Trichloroacetic acid (TCA), tetraethoxypropane (TEP), 2, 

4, 6 tripyridyl-s-tiazine (TPTZ), 2-thiobarbituric acid (TBA), 
n- butanol, 2 thionitrobenzoic acid (DTNB), propofol 
(propofol-Lipuro 1%: Braun Melsungen AG Germany), eth-
ylenediaminetetraacetic acid (EDTA), and cisplatin were 
used in this study. All other chemicals were obtained 
from the Sigma.

3.1. Animals and Treatments
In this experimental study, we used male Wistar rats of 



Taheri Moghadam G et al.

Anesth Pain Med. 2014;4(4):e142212

180-250 g body weight kept at a 12:12 h light-dark cycle 
with free access to drinking water and standard laborato-
ry chow. Animals were randomly divided into six groups 
(5 rats in each group) and then, treated intraperitoneally 
(IP) for one week. 

The design of these treatments resulted in four experi-
mental groups. The groups were as follows: propofol 
group, control group, cisplatin group, and propofol with 
cisplatin group. Then, propofol was administered (10 mg/
kg/day, IP) (15, 16) alone or in mixture with cisplatin (7 mg 
/kg/day, IP) (13, 17). Also, control group received only nor-
mal saline. Finally, animals were killed 24 hours after the 
last dose of treatment, and their blood was taken. Blood 
samples were collected in heparinized tubes, and plasma 
was immediately separated. 

3.2. Kidney Parameters 
In present study, blood urea nitrogen (BUN) and creati-

nine (Cr) levels were measured by automated biochem-
istry machine a according to the standard procedure of 
Pars azmoon kits.

3.3. Oxidative Stress Biomarkers 
Oxidative biomarkers in this study such as lipid per-

oxidation, total antioxidant capacity and total thiol mol-
ecules were measured.

3.4. Measurement of Lipid Peroxidation 
In this method, lipid peroxidation (LPO) product in the 

tissues was determined by thiobarbituric acid (TBA) re-
agent during an acid heating reaction that expressed the 
amount of malondialdehyde (MDA) production. At the 
end, calibration curve of tetramethoxypropane standard 
solution was used to determine the concentrations of 
TBA- MDA adduct in the samples (18). 

3.5. Measurement of Total Antioxidant Capacity 
In this study, total antioxidant capacity (TAC) was calcu-

lated with ferric reducing ability of plasma (FRAP) assay. 
This process is founded upon the ability of plasma in re-
ducing Fe3 + to Fe2 + in the presence of TPTZ. Also, the re-
action of Fe2 + with TPTZ gives a complex with blue color 
and maximum absorption at 593 nm (19). 

3.6. Assay of Total Thiol Molecules 
In this protocol, total thiol molecules (TTG) evaluated 

with DTNB reagent. Thiol molecules react with DTNB and 
create a yellow complex with excellent absorption in 
spectrophotometer at 412 nm (20). 

3.7. Statistical Analysis 
Reported data were mean ± SEM of at least three inde-

pendent experiments performed two times or more. The 
1-way analysis of variance (ANOVA), followed by a Tukey 

post hoc test, was used to compare multiple groups, and 
all comparisons were significant when P < 0.05. 

4. Results 
Kidney parameters of creatinine (Cr) level and blood 

urea nitrogen (BUN) in animal tests are shown in Figure 
1 and 2. Propofol caused a significant reduction in Cr and 
BUN compared with the control group (P = 0.001, P = 0.02, 
respectively). 

4.1. Oxidative Stress Parameters 

4.1.1. Lipid Peroxidation 
 Cisplatin changed a significant increase in LPO com-

pared with the control group (P = 0.03). P ropofol induced 
a significant decrease in LPO compared with the cisplatin 
group (P = 0.03).  Coadministration of cisplatin w ith pro-
pofol decreased cisplatin-induced LPO (P = 0.04) (Figure 3).  
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Figure 3. Lipid Peroxidation (LPO) Level in Blood Rats
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Values are the mean ± SE 95%CI, (n = 5). aa Significantly different from con-
trol group at P   < 0.05. bb Significantly different from Cis group at P < 0.05. 
Pf, propofol; Cis, cisplatin; Pf + Cis, propofol +cisplatin )

Figure 4. Total Thiol Molecules (TTM) in Blood Rats
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Figure 5. Total Antioxidant Capacity (TAC) in Blood Rats
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4.2. Total Thiol Molecules 
The value of TTG  in propofol group was not significantly 

different from the control and other groups (Figure 4). 

4.3. Total Antioxidant Capacity 
Cisplatin caused a significant decrease in TAC when 

compared with the control group (P = 0.001). Treatment 
with propofol improved TAC compared with the cisplatin 
group (P = 0.04). Coadministration of cisplatin with pro-
pofol significantly increased TAC level compared with the 
cisplatin group (P = 0.02) (Figure 5). 

5. Discussion 
General findings in this study showed the possible tox-

icity of cisplatin through increasing oxidative injuries. 
Results indicated that oxidative markers such as LPO, 
TAC, and TTG are stimulated in contact with cisplatin, al-
though their defense is not sufficient to induce free radi-
cals production. The present results also showed that TTG 
is decreased by cisplatin. However, propofol indicates an-
tioxidant properties throhout reduction oxidative stress 
induced by cisplatin. On the other hand, cisplatin toxicity 
of oxidative reactive agents is characterized by  increase 
in BUN and Cr in the serum. Indeed, oxidative stress in-
duction in cisplatin toxicity is indicated by the increase 
in ROS and fouling cellular damage as shown by an in-
crease in LPO and decrease in TAC and TTG.

Propofol effect may be due to its chemically similar 
structure to endogenous antioxidant α-tocopherol (Vita-
min E) and theoretically should show similar properties 
(21). The present result indicates reduction of LPO in the 
propofol treatment group induced by cisplatin. Numer-
ous antioxidants as free radical scavengers, including fla-
vonoids, vitamin E and vitamin C were reported to have 
various protective effects in cisplatin-i nduced damage 
(4, 22, 23). The antioxidant effects of propofol may also be 
due to its capacity in attenuating the formation of lipid 
peroxides (24), inducing the expression of antioxidant 
enzyme home oxygenase-1 (10), decreasing the expres-
sion of nitric oxide synthase (NOS), (25) and fixing the 
mitochondrial membrane (26).

Our findings showed that, propofol activates oxidative 
biomarkers against cisplatin toxicity in plasma. In kid-
ney, cisplatin increases production of oxidative stress 
biomarkers in nephrotoxicity (13, 27) and produces  ROS 
such as hydroxyl radical and superoxide anion (14, 28). 
Previous studies showed that increased cisplatin induc-
es LPO biomarkers production  such as MDA, 4-hydroxy-
2-nonenal (4-HNE), and 8-isoprostane (27, 29, 30). We 
think it is due to the antioxidant properties of propofol 
in the blood. Propofol was also shown to endorse mito-
chondrial activity by stabilizing the transmembrane 
electrical potential (31, 32) and inhibiting mitochondrial 
permeability transition pore openings (33), both contrib-
uting to suppression of mitochondrion-dependent apop-
totic signaling (34).
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 The damages induced by cisplatin are resulted from free 
radicals through lipid peroxidation of cell membranes, 
reduction in antioxidant enzyme and antioxidant sub-
strates to induce oxidative stress, which is the main fac-
tor in acute and chronic injuries in different tissues (35). 
In this study, cisplatin exposure causes a significant in-
crease in LPO production. Most significantly, propofol de-
creased LPO (Figure 3). These findings are consistent with 
previous investigations using a variety of antioxidant 
uptakes (36-38).  Recently, in vitro studies showed that 
propofol could efficiently suppress apoptotic signaling 
and prevent apoptotic death of myocardial cells encoun-
tering fatal stimuli (10, 39, 40). Propofol in experiments 
on heart tissuess, reversed mitochondrial permeability 
transition (33) and reduced ischemia–reperfusion dam-
age (41-43). These conclusions support the idea that pro-
pofol can prevent the sequences of oxidative stress. In-
terestingly, as evidenced oxidative damage, these results 
verify that cisplatin-induced oxidative damage could be 
improved by propofol. Nevertheless, the strict molecular 
and cellular mechanisms of an accepted role of propofol 
(protective role) should be investigated in the future.
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