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Abstract

The meeting between Rumi and Shams, in the 13th century, was a turning point in the life of Rumi leading to a revolutionary effect in
his thoughts, ideas, and poems. This was an ever-inspiring meeting with many results throughout the centuries. This meeting has
created some footprints in cellular and molecular medicine: The discovery of two distinct genes in Drosophila, i.e. Rumi and Shams
and their role in controlling Notch signaling, which has a critical role in cell biology. This nomination and the interactions between
the two genes has led us to a number of novel studies during the last years. This article reviews the interactions between Rumi
and Shams and their effects on Notch signaling in order to find potential novel drugs for pain control through drug development
studies in the future.
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1. Context

Historical introduction: Rumi or Molana (Jalal-ad-Din
Mohammad Balkhi) was a 13th century poet with all of his
quotes in modern Farsi (1). Many of his citations deal with
pain and how to alleviate pain through love; also quoting
virtual metaphors for pain alleviations including love, Su-
fism, wine, and opium (2). According to related stories,
there was a turning point in his life after a meeting with
Shams, another Persian Sufi. This meeting revolutionized
his life in all mental and ideological aspects; leading to a
new era in his life and its division to two epochs of his life:
pre-meeting and post-meeting.

2. Cellular Aspects of Rumi and Shams Interactions

2.1. Notch Signaling and Its Importance

As a single-pass transmembrane receptor, Notch is the
mediator for cell-cell interactions with an essential role
in cell fate, especially throughout development. In multi-
cellular organisms, Notch signaling is a matter of com-
munication between neighboring cells in order to pave a
proper developmental pathway (Figure 1); talking in brief,
local cell-cell communication is the downstream result of
proper Notch signaling process (3). Addition of xylose and

glucose residues to Notch receptors affect Notch signaling;
the former impedes and the latter enhances the process of
the effects of Notch signaling and its aftermath could be
described as the following:

- Notch signaling pathway (including glycosylated
Notch proteins) has an evolutionary conserved track, with
a major role in many cell functions; including but not lim-
ited to (4-8)

(1) Final cell fate
(2) Development
(3) Vasculogenesis
(4) Tumorigenesis
(5) Immunological interactions
(6) Learning and memory
- Misregulations in Notch signaling causes a number of

cell abnormalities and/or disease states.
- Using different molecules in controlling Notch signal-

ing may be potential solutions for finding treatments in
some disease states (3, 9-13).

- Mastermind-like (MAML) superfamily, which are tran-
scriptional coactivators, are essential nuclear elements
that support Notch activity; among them MAML1 is the
most important one (Figure 1) (14, 15).

- Recombination signal binding protein for im-
munoglobulin kappa J region (i.e. known as an abbre-
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viation: RBP-J) is "A major transcriptional effector of Notch
signaling" with a great control on the whole Notch sig-
naling pathway, especially during cell differentiation and
neuronal maturation (16-18) (Figure 1).

Figure 1. Notch signaling pathway in detail; for more explanations please see the
text, including genetic control of Notch signaling; please note thatγ-secretase com-
plex is the location where DAPT acts; also, NICD stand for Notch Intracellular Domain

2.2. Notch Receptor and Its Structure

In mammals Notch receptor is composed of four sub-
types: Notch 1, Notch 2, Notch 3, and Notch 4, while canon-
ical ligands of Notch receptors are five transmembrane
proteins (Delta-like1,3,4 and Jagged 1 and 2); however, in
Drosophila, Notch is encoded as a single transmembrane
receptor (19-22).

As demonstrated in Figure 1, Notch receptors consist of
these segments (23):

- An extracellular component consisted of 29 - 36 epi-
dermal growth factor (EGF) repeats, three cysteine rich LIN
repeats, and a heterodimerization domain (HD) that at-
tached to the next segment non-covalently at the S2 cleav-
age site; ADAM (standing for "A Disintegrin and Metallopro-
teinase") could cut the S2 cleavage site.

- An integral transmembrane protein with a short ex-
tracellular part (HD) extended throughout the cell mem-
brane towards the intracellular area.

2.2.1. Rumi

POGLUT1 also known as Rumi is a protein O-
glucosyltransferase and is an abbreviation for "protein
O-glucosyltransferase 1" [Homo sapiens (human)]; muta-
tions in Drosophila Rumi have a temperature-sensitive
Notch phenotype, its target is the extracellular domain of
Notch and has "18 target sites on Notch for Notch signal-
ing". Most importantly, Rumi is an important gene in con-
trolling Notch signaling through O-glucosylation of Notch
epidermal growth factor-like (EGF) domains (4, 24, 25).
This means that Rumi encodes an O-glucosyltransferase
while the latter attaches glucose sugars to serine residues
in EGF domains of the extracellular region of Notch;
this effect by Rumi modifies Notch signaling (20). O-
glycosylation might be the modulator of stability in EGF
repeats and is essential for Notch activity, through "trans-
ferring glucose and xylose to the EGF domains of Notch
and other signaling receptors". Extracellular domain of
Notch is "The target of Rumi" (Figure 1) (24). In Drosophila,
"multiple O-glucose residues serve as a buffer against
temperature-dependent loss of Notch signaling" (26); in
this way, POGLUT1 regulates Notch signaling and cellular
Notch trafficking (11, 12, 19). To explain more, O-glucose
residues promote Notch signaling, with xylosylation,
which is an important step in completion of this process.
These events happen in the secretory pathway of the cell.
O-glucose and O-fucose are added to target proteins like
Notch inside the endoplasmic reticulum (ER).

Loss of Rumi results in temperature-sensitive loss of
Notch signaling in flies; in other words, in flies, Rumi is
considered as a temperature-sensitive regulator of Notch
signaling (27). It is known that regulation of Notch activ-
ity is controlled by tissue-specific alterations in the glycan
structures (19, 28-32).

2.2.2. Shams

In Drosophila, glucoside xylosyltransferase Shams has
been shown to be responsible for xylosylation EGF-like re-
peats (9, 11, 25). Lee et al. demonstrated that in Drosophila,
glucoside xylosyltransferase Shams affects the xylosylation
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leading to selective impediment of binding of Notch recep-
tor with trans-Delta, while cis-ligand is unaffected; thus,
Shams has important roles in developmental aspects of
Drosophila (33). However, xylose residues have negative
regulatory effects on surface expression of EGF 16 - 20 regu-
lation (9). Xylosylation occurs in the Golgi and then Notch
goes to the cell surface.

2.3. Meeting Between Rumi and Shams

Rumi and Shams encode two Drosophila enzymes that
involved the regulation of the Notch signaling pathway in
flies. It has been well shown that Rumi homologs in mice
and humans (called POGLUT1) are both involved in the reg-
ulation of Notch signaling as well, although the details
of how the mammalian homologs regulate signaling are
not necessarily the same as Drosophila. In addition, stud-
ies have shown that if you overexpress one of the human
Shams homologs (GXYLT1) and its downstream enzyme
UDP-xylose:α-xyloside α1,3-xylosyltransferase (XXYLT1) in
flies, phenotypes compatible with loss of Notch signaling
will be observed (34-39). However, evidence from the mam-
malian system has not been published on these enzymes
yet. Of note, human XXYLT1 shows gene amplification in a
number of cancers, some of which are associated with de-
creased Notch signaling (9). Therefore, it is possible that
in agreement with the currently available Drosophila data,
human XXYLT1 overexpression in humans decreases Notch
signaling and thereby promote cancer formation or some
of the developmental disorders (37, 38, 40, 41). It seems that
the role of Rumi, as a temperature-sensitive regulator of
Notch signaling, is exerted after its glycosylation and ex-
tended through Shams, and therefore, modulating the lat-
ter effects of Shams in Notch signaling.

3. Clinical Aspects of the Meeting Between Rumi and
Shams

Given the roles identified for Rumi and Shams in reg-
ulation of Notch signaling in animal models, mutations in
these genes might contribute to human diseases involving
altered Notch signaling; meanwhile, mutations in Notch
receptors and other components of the Notch signaling
pathway may lead to a number of diseases (42, 43). On the
other hand, there may be hopes to treat some diseases by
blocking Notch receptors. However, due to widespread ef-
fects of Notch signaling, a thorough consideration of its
effects on different organ systems is needed before assess-
ment of its effects on pain management.

Is there currently any hope to treat some disease by
blocking Notch receptors? In other words, is there any
means to use antagonists of Notch signaling pathway as

therapeutic agents? The potential answer is yes. Several
different strategies for blocking Notch signaling are being
tested or developed for treating human diseases. These in-
clude small molecules that inhibit Notch receptor cleaver
and/or antibodies that bind Notch and prevent its activa-
tion. There are side effects, therefore, researchers try to
come up with strategies that instead of blocking the path-
way in an all-or-none fashion, only inhibit specific aspects
of signaling.

Here, we review in brief, the potential role of Notch
signaling pathways and its interactions on pain control; a
brief look at the role of Notch signaling on organ system
diseases is presented in Box 1.

4. Activation of Notch Signaling Pathway and Its Im-
plications in Pain Management: A New Hope for Treat-
ment of Pain

During the last years, a number of studies have demon-
strated the role of Notch signaling in pathogenesis and
maintenance of pain. In addition, there are also comple-
mentary studies that have found new windows for mod-
ulating pain in the clinical field; these studies suggest a
promise through notch signaling pathway for treatment
of pain; some major controversies exist yet. A number of
these studies are briefed here. These studies mainly raise
questions dealing with some answers in order to find new
treatments.

4.1. Role of Notch Intracellular Domain (NICD) in PainManage-
ment

Sun et al. suggested "A pivotal role for Notch signaling
pathway in development of neuropathic pain" (65); they
studied the following aspects of neuropathic pain:

- Increased excitability (66)
- Decreased thresholds of primary sensory neurons (67,

68)
- Change in the processing pathway of the spinal cord

synaptic functions (67)
- Impaired function of inhibitory interneurons or loss

of their network (69, 70)
- Modifications of brain stem input to the spinal cord

(71)
- Loss of cortical inhibition (72)
Sun et al. also found overexpression of Notch Intracel-

lular Domain (NICD; Figure 1) in "DRG (Dorsal Root Gan-
glia), sciatic nerve, and spinal cord" in normal rats and
suggested a therapeutic option for alleviating neuropathic
pain; i.e. they used intrathecal DAPT (which is aγ-secretase
inhibitor; Figure 1) and found promising results for neuro-
pathic pain when this pain was induced by spared sciatic
nerve injury. This approach could be a potential promise
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Box 1. A Review on the Role of Notch Signaling on Organ System Diseases

Review on the Role of Notch Signaling on Organ System Diseases

Central nervous system (CNS)

There are studies demonstrating that manipulating the Notch pathway leads to alterations in many aspects of CNS function, including acute and/or chronic
pain. Rusanescu and Mao demonstrated that Notch3 knocked out mice have permanent changes in their nociceptive neurons resembling chronic pain states
while all other aspects of their neurologic system were normal (44).

In Alzheimer’s disease, there is a ligand-induced Notch pathway activation; which is presenilin-mediated; in this process, presenilin has a critical role process in
this process; there are also potential pathways proposed to treat or to prevent Alzheimer’s disease through manipulation of interactions between Notch,
presenilin, and the amyloid precursor protein (APP) (45, 46).

Cardiovascular system disorders

Notch signaling is essential in lymphatic valve formation and development (47, 48). On the other hand, Notch signaling has antagonistic effects in the process of
aortic valve differentiation, leading to development of bone-like cells; having a role in enhancing and accelerating of calcification, and abnormal morphogenesis
of the aortic valve including in bicuspid aortic valve; in addition, in the aneurysm of the thoracic aorta and congenital Marfan syndrome (5, 48-53).

Musculoskeletal system

Paradas and colleagues recently reported a missense mutation in human POGLUT1 (Rumi) in patients with a new type of limb-girdle muscular dystrophy (54);
further studies have opened new windows towards treatment of the disease through manipulating effects of Rumi on Notch signaling (30).

Cancer treatment

Rumi mutations are identified in cancer (55). Yu et al. discussed the essential role of Rumi in Notch signaling and stated that any dysregulation of Rumi is in
association with several disease states in human beings; while "loss of Rumi activity" may have a role in some diseases; if these mechanisms are well recognized,
Notch signaling pathway may be modulated by Rumi (55). Studies similar to the latter help us improve our pathway by modulating Notch signaling using Rumi
in order to seek new treatment options for some clinical conditions including modulating cancer cells and cancer formation, especially in pancreatic, breast,
lung cancer, renal cell carcinoma, and T-cell acute lymphoblastic leukemia; in addition, in acute or chronic pain management, these disease processes are
involved with impaired Notch signaling pathways (40, 41, 56-58). Inhibition of ADAM 17 expression (a member of the ADAM superfamily) could inhibit Notch
pathway in renal cell carcinoma with a therapeutic potential (59). Furthermore, inhibition of MAML might be a potential treatment in cancer through Notch
signaling inhibition (14, 15).

Congenital cholangiopathy

Thakurdas et al. found that Rumi has a role in Alagille syndrome (an autosomal-dominant congenital cholangiopathy) through opposing Notch ligand JAG1; i.e.
Rumi opposes JAG1 function in mice liver (60).

Retinitis pigmentosa

EYS produces a great number of EGF and is pressed out in retina (the photoreceptor layer), in patients with autosomal recessive retinitis pigmentosa. Rumi has
specific targets on EYS and enhances the proper development of EYS shut in photoreceptor development (61-64).

Rare genetic disorders

There are some rare disorders that are the result of Rumi activity loss like Dowling-Degos disease (55).

in treatment of neuropathic pain (65). In another some-
what similar study, Yang et al. demonstrated the effects of
"minocycline combined with DAPT" in treatment of neuro-
pathic pain (73).

On the other hand, "proteolytic processing of Notch
receptors and their ligands" is among the main roles of
ADAM superfamily (ADAM standing for "A Disintegrin And
Metalloproteinase") (74). Inhibition of ADAM 17 expression
(a member of the ADAM superfamily) could inhibit Notch
pathway even more effectively than γ-secretase inhibitors
in renal cell carcinoma; this pathway might also serve as a
potential window for pain control (Figure 1) (59).

In addition„ Xie et al. found that if notch signaling
pathway was activated in rats, mechanical allodynia was
induced and maintained more severely; they concluded
suppression of this pathway could be a promise for treat-
ment of neuropathic pain (75). In another study on lum-
bar spinal dorsal horn, Xie et al. found very similar re-
sults where they administered intrathecal DAPT (notch sig-

naling inhibitor) before nerve injury and found decreased
occurrence of mechanical pain after injury; in addition,
they found intrathecal Jagged-1 (JAG-1) peptide effective for
treatment of chronic pain after sciatic nerve injury (Figure
1). Therefore, they concluded their results as a promising
window and a new target in treatment of neuropathic pain
(76).

In summary, according to a number of studies, includ-
ing the above, the following findings could be among the
potential mechanisms for future works finding possible
treatments of pain by using Notch signaling pathways (65,
73, 75, 76):

(1) Overexpression of Notch Intracellular Domain
(NICD) occurs in nerve roots and spinal cord through the
role of intrathecal DAPT (γ-secretase inhibitor) after nerve
injury; there may be the potential that overexpression of
NICD could serve as a means for treatment of neuropathy.

(2) The effect mechanism of some agents (e.g. minocy-
cline) combined with DAPT may be helpful in treatment of
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neuropathic pain.
(3) Intrathecal Jagged-1 (JAG-1) peptide may be an effec-

tive alternative for treatment of chronic pain.
(4) The role of members of the ADAM superfamily in in-

hibition of Notch pathway.

4.2. Notch Signaling and Progranulin

Progranulin is a secretory protein and a growth fac-
tor, which is cysteine-rich and consists of "seven-and-a-half
tandem repeats of the granulin/epithelin module". It has
a number of significant functions in many normal and
pathological processes; for example, it has been mainly
studied in pathophysiology of neurodegenerative diseases
of CNS (77-80). Lim et al. found that after neuronal injury,
progranulin up-regulation could attenuate neuropathic
pain while motor function recovery would be enhanced;
they confessed that improvement in survival of damaged
neurons and/or augmented regrowth of neuronal cells
might be the underlying mechanism for their finding (81).

On the other hand, Altmann et al. demonstrated that
inducible progranulin overexpression leads to a number
of nerve recovery after nerve injury for example, axonal
growth and sensory and motor blocks. They concluded
that progranulin-induced activation of Notch signaling
pathway could enhance the recovery process of partially
injured neurons, leading to increased neuronal regenera-
tive capacity, a finding in support of the progranulin-Notch
crosstalk hypothesis; they also discovered progranulin as a
requirement for perpetuation of Notch1 expression and as
an activator for Notch receptors. Meanwhile, they found
that increased levels of progranulin result in "enhanced
Notch-dependent gene transcription". Finally, based on
their study, Notch signaling pathway could be a promising
therapeutic pathway in future of neuropathic pain man-
agement (82). Hardt et al. suggested that progranulin de-
ficiency may contribute to chronic neuropathic pain (83).
Some evidence suggest a promise in acute or chronic pain
management (65, 82-86), while Notch signaling is consid-
ered as functional receptors for progranulin (GRN) and in-
volved in neurotrophic effects of GRN; progranulin is a
functional ligand of Notch (85, 87). In summary, the role
of progranulin in Notch signaling pathway is a potential
route for treatment of pain.

4.3. Notch Signaling, Immune System, and Pain

Notch signaling has a key role in cell development and
cell fate in many subtypes of the immune system cells and
has applications in treatment of the immunological dis-
orders; however, many of these cells affect the pathogen-
esis, induction, and maintenance of neuropathic pain and
this window could be highly promising as the new thera-
peutic model for treatment of pain (22, 88-91). However,

Notch signaling has a dynamic response towards neuronal
activity. Alberi et al. found that Notch regulation of "neu-
ronal morphology, synaptic plasticity, learning, and mem-
ory" are all affected by Notch signaling (92). In addition,
Wang et al. demonstrated "increased expression of selec-
tive Notch receptors (Notch 1 and 2), ligand (JAGGED2),
and target genes" in nucleus pulposus of the intervertebral
discs treated with specific inflammatory cytokines. In ad-
dition, they found that Notch genes have "dysregulated ex-
pression in degenerative disc disease" and they conclude
that controlling inflammatory cytokines affecting Notch
signaling pathway controls disc disease (93).

5. Conclusions

Shams modulates Rumi in cellular interactions lead-
ing to regulation of Notch signaling; however; this pro-
cess has a great number of opportunities for potential
future therapeutic approaches in management of neuro-
pathic pain. Here, we reviewed the many different seg-
ments in the Notch signaling process as potential thera-
peutic options in pain management; future studies consid-
ering "drug development and drug delivery" could help us
use these proposed segments in creating novel drugs.

Is there a chance that we could use "the meeting be-
tween Shams and Rumi" as a new era in pain management;
the same as meeting between Rumi and Shams created a
new era in Rumi’s life, dividing "pain management history"
into two epochs as the meeting divided Rumi’s life into
two completely different epochs: pre-meeting and post-
meeting? A question to be answered yet.
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