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Abstract

An emerging area of computer science is artificial intelligence (AI), which involves creating machines capable of learning, reason-
ing, and solving problems in the same way as humans. There is increasing use of machine learning techniques in the medical field,
along with image recognition, language processing, and data mining, ranging from automated image analysis to disease predic-
tion. Neurosurgery is frequently regarded as a pioneer in developing disruptive and innovative technologies that have significantly
altered the course of acute and chronic disorders, such as epilepsy and brain tumors. Artificial intelligence platforms have been de-
veloped in recent decades to contribute to the paradigm shift in brain tumor surgery. Artificial intelligence platforms can result in
safer and more effective brain tumor surgery. Artificial intelligence will soon be used to evaluate, analyze, and provide high-quality
medical care. Robots will also become more prevalent in neurosurgery. Hence, physicians must keep up with this revolution to per-
sonalize patient care and deliver meaningful outcomes. For neurosurgeons to continue providing high-quality care in the future,
they must understand artificial intelligence and utilize it effectively.
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1. Context

The healthcare industry faces unprecedented chal-
lenges due to an increasing patient population and a
longer life expectancy. Consequently, in recent years, the
healthcare industry has experienced a shortage of human
resources. Nevertheless, relying solely on human capi-
tal to meet the rising demand for healthcare services is
insufficient (1). According to estimates, approximately
13.8 million people worldwide receive neurosurgical treat-
ments annually (2). However, more than five million low-
and middle-income individuals have untreated neurosur-
gical diseases each year, despite an increase in the num-
ber of neurosurgeons to more than 50,000. Therefore,
the world needs 23,000 neurosurgeons to fix the neu-
rosurgical shortage, particularly in developing nations.
However, educating neurosurgeons is competitive, time-
consuming, and costly and requires highly devoted train-
ers and specialized surgical equipment (3-7).

Therefore, technology has paved the way for human-
machine interaction to resolve this issue in the 21st cen-
tury. With the advent of artificial intelligence (AI), com-

puters can mimic and surpass human intelligence (1). As
a result, neurosurgeons can provide their patients with
the best possible health care through AI during diagnostic
and prognostic procedures and in supporting them dur-
ing surgical procedures. Aside from creating, analyzing,
and storing clinical data, AI is also important for reducing
expenses in neurosurgery (8).

Neurosurgery, where technology and medicine are in-
tertwined, can benefit from AI and machine learning since
high-tech medical equipment and complex information
systems are frequently used in neurosurgery. Further-
more, neurosurgeons have been at the forefront of adopt-
ing innovative technology to provide superior patient
treatment since Kwoh et al. performed the first modern
robotic technique for computed tomography (CT)-guided
stereotactic brain surgery in 1988 (9). It is well known that
inside and outside operating rooms, neurosurgeons use
various noninvasive imaging methods, including CT scans
and magnetic resonance imaging (MRI) (10, 11). As AI im-
proves the quality of these high-resolution radiological im-
ages, invasive diagnostic procedures can be minimized,
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complications can be identified, and better care can be pro-
vided. Additionally, neurosurgery produces a lot of diag-
nostic and therapeutic data, making it an ideal candidate
for machine learning. Accordingly, this article discusses ar-
tificial intelligence applications in neurosurgery, particu-
larly concerning epilepsy, brain tumors, and patient evalu-
ation.

2. Patients Evaluation

Due to time constraints and fatigue, primary care
physicians may encounter difficulties getting complete
medical histories from their patients (12). Data are col-
lected via paper questionnaires or interviews during a pa-
tient visit, and the information is then manually recorded
in the electronic health record (EHR). Lack of time or train-
ing results in missing or poor-quality data (13). Conse-
quently, information gaps can lead to inaccurate diag-
noses and a failure to address issues that affect 18 million
Americans annually (14).

Thanks to recent technological advancements in AI
and natural language processing, AI-based conversational
bots can extract meaningful information about a person’s
personal and family history before the visit (15). Chatbots,
avatars, and voice assistants are some of the conversational
agents that mimic human communication through text
or voice (16). These agents have been used in healthcare
to screen, triage, counsel, and manage chronic conditions
and train healthcare professionals. Some benefits have
been reported, including improving patient engagement,
reaching large populations, and supporting populations
with poor health literacy (17). For instance, telemedicine
for routine monitoring and follow-up visits could bene-
fit people who live in remote areas without access to spe-
cialists and reduce the cost and time required to travel to
them. In addition, such a patient-centered approach can
lead to more frequent and punctual visits (8). It is also ben-
eficial for geriatric patients, given that they are more likely
to experience a more significant number of chronic condi-
tions, which may require constant monitoring. However,
traveling back and forth to clinics for every issue can be
exhausting and not always necessary. Additionally, some
of these individuals may have physical or cognitive dis-
abilities, leading to a lower referral rate or the inability to
explain their symptoms clearly in short sessions. Conse-
quently, this might result in misdiagnosis (18).

Furthermore, medical technologies, such as wearable
devices (WDs), are becoming increasingly crucial for per-
sonal analytics since they enable users to monitor their
health, record physiological information, and schedule
medications while monitoring their physical state. In addi-
tion, these technologies provide continuous medical data

for monitoring metabolism, detecting and treating dis-
eases, and supporting people in living healthier lifestyles.
Likewise, this technology has been successfully utilized in
the assessment of motor function in neurodegenerative
diseases such as Parkinson’s disease (PD) and Huntington’s
disease (HD) by analyzing information regarding tremors,
abnormal gait, bradykinesia, rigidity, and chorea (19). Be-
sides WDs for detecting resting tremors in PD, vibrotactile
stimulators are also used for reducing the severity of rest-
ing tremors (20). Another use of WDs is in stroke rehabil-
itation and recovery. For instance, it is possible to mon-
itor and collect movement data unobtrusively using sen-
sors such as an inertial measurement unit. These sensors
can be used to determine a patient’s motor deficits and de-
termine treatment options. In addition to monitoring a
patient’s response to treatment by capturing data during
daily life activities, the system will provide immediate feed-
back to enable patients to undergo more extensive train-
ing outside the clinic (21).

Moreover, technology, such as laptops equipped with
cameras, can be used to track eye movements and irregu-
larities or determine the underlying cause of the problem.
For example, a patient with central nerve palsy caused by
cerebral compression can be detected using eye-tracking
technology in neurology while watching a movie or tele-
vision. This method’s repeatability and minimal danger
make it suitable for many applications. However, it cannot
replace the traditional invasive procedure (22-24).

Some smartphone applications have primarily been
developed for cognitive change assessment to monitor de-
mentia patients and record their wandering episodes. In
addition, they may be able to aid in collecting information
concerning potential risk factors for other cognitive disor-
ders and early behavioral changes. For example, an app
called "Ivitality" is designed to perform five digitally mod-
ified versions of traditional cognitive exams. Another in-
stance is the "Delapp" app, designed to detect delirium in
hospitalized patients (25).

Additional research could assist in developing suitable
sensors for brain tissues that can detect chemical biomark-
ers that may cause neurological disorders, such as neuro-
transmitters. In addition, by collecting consistent and sus-
tained data on vital signs, AI can predict clinical laboratory
test results with less error (26).

3. Epilepsy Management

Epilepsy affects approximately 10% of the population
at some point in their lives. Unfortunately, despite count-
less trials to cure epilepsy, antiepileptic drugs may be in-
effective for about 30% of these patients. In addition, pa-
tients’ treatment outcomes vary depending on their intrin-
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sic characteristics, such as seizure types and semiologies,
brain lesions, or comorbid neuropsychological dysfunc-
tions, as well as extrinsic factors, including treatment initi-
ation stage and treatment conditions. Accordingly, choos-
ing the proper treatment for each patient necessitates indi-
vidualized approaches, which is essential for effectively as-
sessing the patient’s state (27-30). Hence, AI can contribute
to the success of this procedure.

With the development of high-performance comput-
ing technology and multiple mathematical algorithms, re-
searchers can analyze increasing data to tailor treatment
plans for epileptic patients. There are two main areas of
focus for these computational studies: The first is the de-
velopment of machine learning algorithms derived from
large quantities of information obtained from numerous
patients to develop computational machines capable of
performing specific tasks, such as predicting disease out-
comes and automatic diagnosis. Secondly, biophysical in-
silico platforms can replicate the individual patient’s brain
network dynamics using the patient’s specific data, en-
hancing understanding of the pathophysiology and deter-
mining the best treatment. Therefore, integrating various
types of patient data and analysis results into one platform
using computational approaches is essential. These meth-
ods could suggest a new paradigm for precision medicine
if successfully implemented (31).

Recently, AI-based approaches to epilepsy include au-
tomatic seizure detection and prediction, understanding
the epileptogenesis, presurgical planning, optimizing the
medical and surgical management, including the predic-
tion of seizure freedom and delineation of epileptic net-
works, development of wearable electronic devices for peo-
ple with epilepsy, and automated neuroimaging analysis
(32, 33).

4. Automated Seizure Detection and Prediction

Applying machine learning to analyzing massive, com-
plex datasets has sparked significant interest in the au-
tomated detection of seizures in electroencephalogram
(EEG) recordings. Various methods, including the support
vector machine (34, 35), k-nearest neighbor (36, 37), and
deep learning classifiers (38, 39), have been utilized to ac-
complish this task. In addition, the same algorithm has
also been used to predict seizure rates from EEG data using
a restricted database, with prediction times up to several
minutes (40, 41).

As an alternative to EEG recordings, seizure detec-
tion using machine learning has been expanded to non-
traditional data sources such as video recordings, surface
electromyography (EMG), and mobile devices (EEGs). For

instance, a neural network technique was utilized to eval-
uate video recordings of neonates’ bedside-recorded ex-
tremity movements, with a specificity and sensitivity of ap-
proximately 90% for detecting seizures in neonates (42).
Likewise, the sensitivity and specificity were substantially
enhanced when EEG data were added (43). Attempts have
also been made to classify recordings of nocturnal seizures
as tonic, tonic-colonic, or focal motor seizures using in-
frared camera data, infrared markers attached to anatomic
landmarks for motion detection, and artificial neural net-
works (ANN) (44).

5. Application in Surgical Management of Epilepsy

Regarding epilepsy surgery, although it can increase
the likelihood of seizure freedom for eligible patients with
drug-resistant epilepsy from 10% to 67% (45), surgery re-
mains underutilized or performed late in disease progres-
sion. This operation is likely underutilized due to its mor-
tality and morbidity concerns, while both are comparable
to knee and hip replacement surgeries (46). In epilepsy
surgical planning and predicting surgical outcomes, espe-
cially following temporal lobectomy, machine learning ap-
proaches are increasingly applied as a tool for earlier inter-
vention.

According to Grigsby et al., ANNs were used to encode
clinical, electrographic, neuropsychological, imaging, and
surgical data from 65 patients to predict the outcomes of
anterior temporal lobectomy. According to the analysis,
Engel I outcomes were predicted with an 80.0% sensitiv-
ity and 83.3% specificity, while Engel II outcomes were pre-
dicted with 100% sensitivity and 85.7% specificity (47).

Based on the hypothesis that machine learning algo-
rithms could identify epilepsy surgery candidates early
in the disease progression, Wissel et al. trained ML algo-
rithms using n-grams extracted from free-text neurology
notes, EEG and MRI reports, visit codes, medications, proce-
dures, laboratories, and demographics. Two epilepsy cen-
ters were therefore equipped with site-specific algorithms.
A total of 5,880 pediatric patients and 7,604 adults were
grouped according to their surgical and nonsurgical diag-
noses. The study revealed that AI-based models identified
adult patients better than pediatrics eligible for surgery.
However, it was possible to predict pediatric surgical pa-
tients 2.0 years before their presurgical evaluation (48).
However, machine learning might not accurately predict
long-term outcomes in some cases. Therefore, identifying
the patient’s epileptic network before epilepsy surgery is
essential (49, 50).
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6. Brain Tumors

Innovative AI applications in the disciplines of ma-
chine learning, natural language processing, computer vi-
sion, and robotics have the potential to revolutionize neu-
rosurgical practice, which could have a significant impact
on the management of brain tumors, including potential
clinical uses of AI in the preoperative, intraoperative, and
postoperative phases of brain tumor surgery.

Artificial intelligence might play an essential role in di-
agnosis, assessing, and planning as part of the preoper-
ative stage of brain tumor management. The first thing
to note about its role in diagnosis is that machine learn-
ing models, according to previous studies, can diagnose
hematological disorders better than physicians (51). For
example, Podnar et al. conducted a study that employed
machine learning to identify minor differences in routine
blood tests, which allowed for the early detection of brain
tumors. Most notably, the machine learning algorithm
demonstrated a decreasing trend in eosinophil and ba-
sophil counts and an upward trend in neutrophil counts
and serum glucose among patients. In addition, their
model has comparable sensitivity and specificity to CT and
MRI, which were 96% and 74%, respectively (52). Hence, sci-
entists believed this model could be utilized as a screening
tool for intracranial malignancies; however, it failed to dis-
tinguish between primary and secondary brain tumors. In
more recent research, Tsvetkov et al. revealed that glioblas-
toma in patients could be detected by differential scanning
fluorimetry with a 92% accuracy using an AI-powered de-
tection tool (53).

Neuroimaging, specifically MRI, has remained the gold
standard in diagnosing brain tumors. Nonetheless, a lack
of expertise in selecting appropriate MRI sequences can re-
sult in a loss of critical clinical findings, excessive medi-
cal expenses, or even patient injury. Machine learning has
become increasingly crucial in treating brain tumors by
automating sequence selections and assisting radiologists
in diagnosis. According to Brown and Marotta a natural
language processing ML system was developed to analyze
MRI brain imaging requests and select the most clinically
valuable sequences for MRI brain imaging (54). Radiomics
also offers the capability of converting clinical imaging ar-
rays into quantitative characteristics. By mining and val-
idating them using machine-learning algorithms, quanti-
tative imaging biomarkers can be developed for describing
intratumoral dynamics (55).

In addition to blood marker tumor screening and op-
timizing imaging sequences, ML algorithms have been ap-
plied to various tasks related to diagnosing and assessing
brain tumors. A few examples are as follows:

- Identifying and quantifying the molecular expression

of brain tumors
- Detecting metastases within the central nervous sys-

tem
- Distinguishing primary from metastatic lesions
- Determining the grade of the tumor
- Predicting the presence of genetic mutations
A further benefit of this technology is that it can accu-

rately predict the surgery outcome and stratify the risk be-
fore surgery to design a specific treatment plan (56). Ac-
cording to Ko et al., an ML platform could accurately pre-
dict the progression and recurrence of meningiomas us-
ing only radiological data (57).

As AI technology, particularly computer vision, is
rapidly developing, machine learning systems may also
play a significant role in treating intraoperative brain tu-
mors. The project will benefit some areas, including intra-
operative tumor identification, workflow analysis, robotic
surgery, and risk detection (56).

Given that residual peripheral tumor tissue is the lead-
ing cause of tumor recurrence in brain tumors, more ex-
tensive tumor resection is associated with longer survival
time in brain tumors, particularly glioma and GBM (58).
Although several imaging modalities are utilized as guid-
ance tools during brain tumor surgery, these imaging tech-
niques have distinct limitations. As an example, the intra-
operative neuronavigation system uses preoperative im-
age information derived from CT or MRI to guide surgery
in real time; however, due to the phenomenon of brain
shift, the accuracy of tumor margin delineation decreases
as the surgical procedure progresses (59-62). Integrating
deep learning platforms with hyperspectral imaging (HSI)
can address this issue for the intraoperative identification
of brain tumors. Besides, HSI combines intraoperative
imaging with spectroscopy to provide detailed informa-
tion about the surrounding structures both spatially and
molecularly (63, 64). The method was employed by Fa-
belo et al. as a deep learning platform for the analysis of
HSIs of six GBM patients, which included a neural network
containing three convolutional layers. Backgrounds were
identified with 98% accuracy, while tumor tissue was de-
tected with 42% accuracy. The authors also reported that
the system had an 88% sensitivity to categorize images as
tumor-free and a 100% specificity, which indicated that this
technology performed well when classifying normal tis-
sues (58, 63).

An exciting new application of artificial intelligence
is intraoperative workflow analysis, which uses computer
vision combined with machine learning platforms to an-
alyze how steps, phases, instruments, gestures, anatomy,
and pathology are executed during an operation. The
AI-based workflow analysis can provide numerous advan-
tages, including improved intraoperative surgical plan-
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ning and routing, accurate identification of anatomical
structures, identification of risks early, standardization of
phases and steps, the creation of operative notes, and con-
tributions to simulations and training programs. In ad-
dition, this technology is expected to significantly reduce
surgical errors, complications, and operation times within
the next few years and enhance surgeons’ awareness of po-
tential risks (65-67).

Due to the outstanding data-assimilation capabilities
of AI systems, the postoperative phase could profit in var-
ious ways, including predicting complications and recur-
rence, bioinformatic early warning systems, and individu-
alized follow-ups and treatments. Primary spheres of influ-
ence include inpatient, outpatient, and oncology care.

In patients with brain tumors, postoperative compli-
cation development is influenced by many static and dy-
namic factors, which can be assessed most effectively us-
ing AI techniques. Greater integration of AI in brain tu-
mor surgery could prevent or mitigate postoperative com-
plications such as surgical site infection, venous throm-
boembolism, adverse drug events, pressure ulcers, falls,
and hypoglycemia. These avoidable postoperative prob-
lems cause many patients to suffer needlessly. Artificial in-
telligence can help reduce these common problems (56).

7. Conclusions

Artificial intelligence benefits neurosurgeons as it can
be utilized before, during, and after a surgical procedure.
A combination of humans and computers can use arti-
ficial intelligence to improve healthcare delivery by bet-
ter matching patients with appropriate procedures, in-
creasing intraoperative activities, providing postoperative
follow-ups, and improving access to treatment by lever-
aging the most recent advances in AI technology. Hence,
AI may eventually pave the way for personalized medical
care. Precision medicine predicts health outcomes, prog-
noses disease processes, prevents diseases, reduces surgi-
cal complications, and develops numerical models to ana-
lyze clinical data. There are applications for AI in both per-
sonalized and precision medicine. However, additional re-
search, funding, and interdisciplinary collaboration are re-
quired before AI can be widely applied in neurosurgery.
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