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Abstract

Background: The development of virtual human models has recently gained considerable attention in biomechanical studies in-
tending to design for ergonomics. The computer-based simulations of virtual human models can reduce the time and cost of the
design cycle. There is an increasing interest in finding the realistic posture of the human body with applications in prototype design
and reduction of injuries in the workplace.
Objectives: This paper presents a generic method based on a multi-objective optimization (MOO) for posture prediction of a
sagittal-plane lifting task.
Methods: Improved biomechanical models are used to formulate the predicted posture as a MOO problem. The lifting task has
been defined by seven performance measures that are mathematically represented by the weighted sum of cost functions. Specific
weights are assigned for each cost function to predict both stoop and squat type postures. Some inequality constraints have been
used to ensure that the virtual human does not assume a completely unrealistic configuration.
Results: The method can predict the hand configuration effectively. Simulations reveal that predicting a squat posture requires the
minimization of certain objective functions, while these measures are less significant for the prediction of a stooped posture.
Conclusions: In this study, a MOO-based posture prediction model with a validation process is presented. We employed a three-
dimensional model to evaluate the applicability of using a combination of seven performance measures to the posture prediction
of symmetric lifting tasks. Results have been compared with the available empirical data to validate the simulated postures. Fur-
thermore, the assigned weights are obtained for a range of percentiles from 50% male to 90% female according to the postures
obtained by 3D SSPPTM software.
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1. Background

The development of virtual human models has re-
cently gained considerable attention in biomechanical
studies to design for ergonomics. There is an increasing
interest in finding the realistic posture of the human body
with application in prototype design and reduction of in-
juries in the workplace. The computer-based simulations
of virtual human models reduces the design cycle time
and cost. To model work environments, most biomechani-
cal models require the precise body posture of the worker.
Therefore, posture prediction is a significant aspect of the
digital human simulation package. This paper presents
a generic method based on a multi-objective optimiza-
tion (MOO) for posture prediction of a sagittal-plane lift-
ing task. Improved biomechanical models have been used
to formulate the predicted posture as a multi-objective op-

timization problem. The hypothesis is that human per-
formance measures (cost functions) govern the configu-
ration of the body. There are three main methods of pos-
ture prediction. The first uses empirical data, statistical re-
gression, and the data obtained from a large number of ex-
periments or simulations of three-dimensional computer-
based models (1-4). However, this cannot be used in engi-
neering design, where each task requires performing thou-
sands of trials for different percentiles of male and female
subjects. The second method uses the inverse kinematics
approach to determine the joint parameters that provide
a desired position (5-10). However, due to the difficulty of
evaluating the Jacobian when the model has many degrees
of freedom, this method can only be used for simple mod-
els. The latest approach is the optimization-based method
that provides computationally effective models for com-
plex systems. Here, various objective functions that rep-
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resent human performance measures (such as total effort,
discomfort) are optimized (11-14), and it is possible to con-
sider a combination of various cost functions to formulate
a MOO problem and predict more accurate postures. This
method addresses most of the questions associated with
previous methods (15).

Development of biomechanical models that realisti-
cally predict the posture of the human body is a challenge
for ergonomists. The ideal biomechanical models have cer-
tain attributes. First, realism necessitates the model to be
three-dimensional. However, for symmetrical planar tasks,
two-dimensional methods have been well justified (16-18).
Second, there should be a balance between the complexity
of the model and its computation time. Among many tasks
studied by the ergonomists, static lifting posture predic-
tion has gained considerable attention. Three main perfor-
mance measures suggested to affect the postures assumed
in lifting tasks are minimum overall effort (19), local ef-
fort or fatigue (20, 21), and greatest stability (22, 23). Other
proposed behavioral criteria or objective functions are the
minimum potential energy of a system, joint discomfort,
and joint displacement (12, 13, 24-27). However, most of the
previous studies have difficulty predicting the forearm and
upper arm angle accurately. Furthermore, the question of
why some people select the squat posture while the others
prefer to assume the stoop type postures for the same lift-
ing condition is both poorly understood and studied.

2. Objectives

The main goal of this study is to predict realistic
stooped and squat postures with reasonable accuracy
given the nature of actual human joints. We developed an
improved biomechanical model to predict human posture
for the sagittal-plane lifting task. To deal with the redun-
dancy of the model, a MOO method with some kinematics
constraint was used.

3. Methods

We first introduced a three-dimensional model and
then reduced the number of modes in which it can move
(degree of freedom (DOF)) to 11 for simulating a symmet-
ric lifting task in the sagittal-plane. Then we presented the
MOO formulation of our inverse kinematic problem along
with the design variables and constraints.

3.1. Model

Our virtual human model is illustrated in Figure 1. The
model consists of six branches, including the right and left

leg, the spine, the right and left arm, and the head. The spa-
tial skeletal human model was constructed by using the
Denavit-Hartenberg (DH) method (28). Each DOF (the z’s)
represents the relative rotation of two body segments con-
nected by a revolute joint. The assumption is that in the
sagittal-plane lifting task, hands and feet move symmetri-
cally, and no out-of-plane movements occur. Therefore, the
kinematics joints from the fingers to the waist have seven
DOFs. The kinematic joint for the neck has one DOF, and
the kinematic joints for the legs and feet have three DOFs.
The virtual human model is presented in Figure 2.

Figure 1. The 11-DOF virtual human model for sagittal-plane lifting task

3.2. Performance Measures

Among various cost functions suggested for formulat-
ing the MOO problem of posture prediction, we consid-
ered the weighted sum of seven objective functions of to-
tal torque (total effort), delta-potential energy, shear force,
compression/tension force, discomfort, sight angle, and
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Figure 2. Virtual human model with illustration of sight angle.

head torque about the neck. The optimization problem is
formulated as the following equation.

(1)F =
∑7

i=1
wifi (q) , q ∈ RDOF

Where Wi is positive weights that show the relative
importance of the objective functions. The weights are
obtained by fitting the predicted postures to postures as-
sumed by actual subjects. We use the postures obtained by
Dysart and Woldstad (23) and Gallagher et al. (29) in the
experiment as a reference to obtain the weights. Our pref-
erences can be incorporated to predict both stooped and
squat postures. In what follows, a brief description of each
human performance measure is presented.

3.2.1. Total Torque

The hypothesis is that the subject assumes a posture
that requires minimum total effort. In this criterion, the
minimum effort, which is minimized, is defined as the to-
tal external torque summed over the joints. To avoid nu-
merical difficulties, we used the sum of the square of mo-
ments as follows:

(2)f1 (q) =
∑DOF

i=1
M2

i

3.2.2. Delta-Potential Energy

This criterion focuses on the change in the potential
energy of each segment of the virtual human model. Math-
ematically, this performance measure presents a weighted

summation of movements of different body segments.
Here, the weights are the forces of gravity exerted on each
part. The final function is suggested to be as follows:

(3)f2 (q) =
∑n

i=1
(mig) 2 (∆hi)

2

Where n = 19 is the number of lumped masses.
Compression/tension forces: Considerable amounts

of compression/tension forces are applied to the human
body joints during the lifting task. To minimize compres-
sion forces, the following objective function is suggested.
wc/t,i is 10 for L5/S1, neck, and knee joints, while for other
joints wc/t,i = 1.

(4)f3 (q) =
∑DOF

i=1
wc/t,iF

2
i

3.2.3. Shear Forces

forces acting perpendicular to the axis of the spine ap-
ply a shearing force that tries to slide the components away
from their normal axis. If the shear forces are high enough,
ligament and disk tears may lead to shear fractures of the
vertebrae. To minimize shear forces, the following objec-
tive function is suggested. ws,i is 10 for L5/S1, neck, and knee
joints, for other joints ws,i = 1.

(5)f4 (q) =
∑DOF

i=1
ws,iF

2
i

3.2.4. Discomfort

Subjects prefer to minimize their joint displacements
from a neutral position. To indicate the relative impor-
tance of each joint, specific weights are assigned to each
joint based on its tendency to be activated. In this study, we
used the cumulative joint displacement formulation pre-
sented by Yang et al. (24) to approximate the results of the
lexicographic method. In our study, we selectγ = 1 for knee,
ankle, and hip joints. For other parameters in the following
equation, we use the values suggested in previous studies.

(6)f5 (q) =
∑DOF

i=1
γi (∆qnorm

i +G×QUi +G×QLi)

3.2.5. Sight Angle

Subjects always attempt to maintain the sight of the
load in the lifting task. Therefore, to quantify this perfor-
mance measure, we defined the sight angle as the angle of
the vector connecting the eye to the target point (Figure 2).
The formulation is as follows:

f6 (q) = θ (q)2 =

[
ArcCos

(
(Peye − Ptarget) .

→
i

|Peye − Ptarget|

)]2
(7)

Peye is the position vector of the center of mass of two
eyes; Ptarget is the position vector of the target point (load).
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→
i is the unit vector in the x direction. To avoid disconti-

nuity of the arc cosine term, and to maintain the mathe-
matical properties of equation 7, the following equation is
proposed to be minimized as an alternative.

(8)f6 (q) = 10− 10cos

(
θ (q)

2

)
Head torque about the neck: In analyzing the postures

selected by subjects, it became apparent that they are try-
ing to minimize the movement created by the head over
the neck. Thus, the following equation is suggested for this
performance measure.

(9)f7 (q) = (mheadgd) 2

Where d is the projected distance between the CM of
the head and the neck joint in the x direction.

3.3. Design Variables and Constraints

First of all, the end-effector distance constraint has to
be met, since the position of the load is fixed for each lifting
task.

(10)distance = ||P end−effector − Ptarget point||≤ ε

Second, the posture has to be a stable static posture.
Furthermore, given the nature of actual human joints, and
by analyzing the postures assumed by subjects in previ-
ous experiments, four inequality constraints were consid-
ered to avoid predicting unreal postures. These constraints
are: (a) each joint angle is restricted to lie within prede-
termined limits suggested by empirical data, (b) The knee
must always be located under the shoulder, (c) The ankle
must always be located under the elbow. (d) The head must
be above the end-effector (load). Constraints a, b, and c
ensure that the predicted posture is not unrealistic. The
last limit ensures that the virtual human always maintains
sight of the load. These constraints are applicable for pre-
dicting both stoop and squat type postures.

4. Results

First, we obtain the assigned weights for each objective
function in Equation 1 by the trial and error method and
comparing the predicted postures with the ones obtained
in the experiment. We aim to minimize the error of the pre-
dicted posture. Subsequently, we verify our model and op-
timization method by predicting new postures and com-
paring them with empirical data. All the empirical data
were obtained from the experiments performed by Dysart
and Woldstad (23) and Gallagher et al. (29). In addition, the
process of assigning weights and verifying the results was
done by comparing the predicted postures with the ones

obtained with 3D SSPPTM software (3D SSPPTM software pre-
dicts static strength requirements for tasks such as lifts,
presses, pushes, and pulls). For each part, we present two
sets of weights for predicting both stooped and squat pos-
tures.

All optimization problems were solved using a genetic
algorithm. In all simulations, the position of the hand and
the ankle joint is fixed. Hand positions are specified in
terms of the horizontal and vertical distance from the an-
kle.

4.1. Validation with Previous Experiments

In Figure 3A, the predicted posture and the results ob-
tained in the experiment are presented for the hand posi-
tion of (30 cm, 50 cm), and lifting a weight of 4.6 kg. The
weight value for each cost function is shown in Table 1, and
by these weights, three other postures were predicted for
the hand positions of (30 cm, 120 cm), (Max, 120 cm), (Max,
50 cm) in Figure 3. Max represents the maximum reach dis-
tance. As is visible in these figures, the upper arm and fore-
arm angle were predicted with reasonable accuracy. The
mean absolute error (MAE) of the posture prediction is also
represented in Table 1 (top). The errors were calculated us-
ing the following equation.

(11)MAE=
1

n

∑n

i =1
|ei| , ei = |fi − yi|

Where fi is the prediction and yi is the true value.
For low hand positions, postures can be separated into

two different categories; stooped and squat postures. Fig-
ure 3A shows a stooped posture for the hand position (30
cm, 50 cm). However, a squat posture was observed in the
experiment for this hand position (Figure 4A dashed line).
Therefore, similar to the first part, we presented a new set
of weights for each cost function to predict squat postures
Table 1 (bottom). Squat postures obtained from human
subjects and simulations have been represented in Figure
4. Errors have also been shown in Table 1.

4.2. Validation with 3D SSPPTM

To further validate our predicted postures for other
populations and load positions, we have compared our
simulations with the results obtained from 3D SSPPTM soft-
ware for a range of percentiles from 50% male to 95% fe-
male in Tables 2-5. To increase the accuracy of our predic-
tion method, for each population, a new set of weights is
represented. The suggested weights are averaged over 50
cases and are applicable in case of various hand positions
(10 cm < X < 80 cm, 10 cm < Y < 130 cm) and lifting loads
(10 N to 40 N). In the case of 50% percentile male, predicted
postures for four-hand positions have been illustrated in
Figure 5. For low hand positions (Y < 45) squat postures
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Figure 3. A comparison between the observed postures ref and predicted postures for (A) hand position of (30 cm, 50 cm) (B) hand position of (Max, 50 cm) (C) hand position
of (30 cm, 120 cm), (D) hand position of (Max, 120 cm). Black solid lines correspond to predicted postures; red dashed lines, to observed postures.

Table 1. Weights Values and Posture Prediction Error in Comparison with the Experiment

Hand Positions (cm) Posture Type Mean Absolute Error (MAE) Maximum Error (Emax)

w1 = 0.0124, w2 = 0.0125, w3 = 0.1264, w4 = 0.0322, w5 = 1.0021, w6 = 1.0125, w7 = 1.3426

X = 30, Y = 50 Stoop 0.20% 0.35%

X = Max, Y = 50 Stoop 2.25% 2.35%

X = 30, Y = 120 Stoop 0.85% 0.90%

w1 = 0.0083, w2 = 0.0013, w3 = 0.0412, w4 = 0.1245, w5 = 0.1234, w6 = 10, w7 = 10

X = Max, Y = 120 Stoop 0.75% 0.90%

X = 30, Y = 50 Squat 2.2% 2.3%

X = Max, Y = 50 Squat 2% 2.2%

are also presented along with the stooped type postures in
Figure 6.

5. Discussion

As can be seen in Tables 1-5, different values for weights
have been obtained for two categories of postures. The
quantity of these weights determines whether the sub-
ject assumes a stoop or a squat type posture. The per-
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Figure 4. A comparison between stoop type postures observed in experiment (red dashed lines) and in our simulations (solid black lines) for hand positions of (A) (Max, 50
cm), and (B) (30 cm, 50 cm)

Table 2. Weight values and Posture Prediction Error for Stoop Type Postures in Comparison with the Human Male Model in 3D SSPPTM

Percentile w1 w2 w3 w4 w5 w6 w7 MAE (%) Emax (%)

50 0.0126 0.0122 0.1278 0.0322 1.0296 1.0095 1.3561 0.9036 0.9687

60 0.0127 0.0123 0.1303 0.0332 0.9929 0.9813 1.3578 0.8901 0.9552

70 0.0124 0.0127 0.1335 0.0342 0.9856 0.9465 1.3312 0.8604 0.9255

80 0.0130 0.0124 0.1339 0.0342 0.9599 0.9852 1.2831 0.6402 0.7053

90 0.0135 0.0131 0.1275 0.0350 0.9551 0.9750 1.3471 0.7601 0.8252

Table 3. Weight Values and Posture Prediction Error for Squat Type Postures in Comparison with the Human Male Model in 3D SSPPTM

Percentile w1 w2 w3 w4 w5 w6 w7 MAE (%) Emax (%)

50 0.0084 0.0013 0.0412 0.1268 0.1214 9.7596 10.1494 1.2444 1.8792

60 0.0086 0.0014 0.0416 0.1272 0.1247 10.1073 10.4616 1.4634 2.0982

70 0.0090 0.0014 0.0402 0.1229 0.1274 10.1203 10.3100 0.8318 1.4666

80 0.0088 0.0014 0.0399 0.1231 0.1288 9.8389 10.0890 1.7555 2.3903

90 0.0087 0.0014 0.0393 0.1273 0.1256 9.2793 10.0250 1.9566 2.5913

Table 4. Weight Values and Posture Prediction Error for Stoop Type Postures in Comparison with the Human Female Model in 3D SSPPTM

Percentile w1 w2 w3 w4 w5 w6 w7 MAE (%) Emax (%)

50 0.0120 0.0127 0.1301 0.0318 0.9786 1.0143 1.3296 1.2208 1.3086

60 0.0116 0.0122 0.1346 0.0310 0.9624 1.0006 1.2749 0.5186 0.6063

70 0.0109 0.0117 0.1411 0.0303 1.0081 1.0203 1.3085 1.1747 1.2625

80 0.0104 0.0123 0.1455 0.0293 0.9960 1.0661 1.2465 0.9385 1.0262

90 0.0101 0.0122 0.1386 0.0289 0.9857 1.1296 1.3276 0.9378 1.0255

formance measures of delta-potential energy, shear force,
and joint discomfort are more useful for predicting stoop
type postures, while performance measures of compres-
sion/tension, angle sight, and head torque over neck are
more applicable in predicting squat postures. Perfor-

mance measures of total torque have approximately the
same importance in the prediction of both categories of
postures. There are also slight changes (1% to 4%) in the val-
ues of the weights for males and females with different av-
erage body sizes. Note that which posture the subject as-
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Figure 5. A comparison between the postures predicted in this study (black solid lines) and in 3DSSPP (red dashed lines) for high hand positions (Y > 60).

Table 5. Weights Values and Posture Prediction Error for Squat type Postures in Comparison with Human Female Model in 3D SSPPTM

Percentile w1 w2 w3 w4 w5 w6 w7 MAE (%) Emax (%)

50 0.0083 0.0012 0.0427 0.1208 0.1276 10.3937 10.3142 1.1770 1.7108

60 0.0082 0.0012 0.0407 0.1190 0.1306 10.4068 10.6025 1.0739 1.6077

70 0.0081 0.0012 0.0391 0.1126 0.1383 10.8482 10.4194 1.6844 2.2182

80 0.0083 0.0011 0.0386 0.1130 0.1355 10.9842 9.9971 1.0464 1.5801

90 0.0078 0.0012 0.0371 0.1082 0.1343 10.2961 9.8274 1.2985 1.8322

sumes depends on the range of movement of each joint,
and such parameters are not the same for all populations.
The MOO formulation used in this study is a generic model

that can easily have been extended to a new model that
considers other factors like the greatest stability or local ef-
fort.
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Figure 6. Both stoop (solid thick lines) and squat (solid thin lines) type postures obtained in this study for various low hand positions (Y≤ 45). Red dashed lines correspond
to the results obtained from 3DSSPP.

5.1. Conclusion

We employed a three-dimensional model to evaluate
the applicability of using a combination of seven perfor-
mance measures for posture prediction of symmetric lift-
ing tasks. Two cost functions of head torque over neck
and sight angle were first introduced in this paper and ap-
peared to be the essential part of the MOO method for pre-
dicting squat postures.
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