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Abstract

Context: RNA editing is an essential modification that needs to develop normal cells and is involved in a wide range of biological
processes. It can arise in both coding and non-coding sequences with different functional effects. Although the expansion of tran-
scriptome diversity is the primary goal of RNA editing, dysregulation and aberrant editing may act as an essential contributor to
cancer pathogenesis.
Evidence Acquisition: The current review aimed to investigate the role of RNA editing in cancer initiation and progression. Science
Direct and PubMed databases were reviewed from 2000 to 2020 and 2003 to 2020, respectively, using various combinations of "RNA
editing" and "cancer" keywords.
Results: The location of editing sites has different functional impacts on tumorigenesis. Nonsynonymous editing in antizyme
inhibitor 1 (AZIN1) leads to a metastatic progression of colorectal and gastric cancer. Recoding editing events in bladder cancer-
associated protein (BLCAP) is correlated with the progression of cervical carcinogenesis. Editing events located at 3′UTRs are also a
general mechanism to promote tumor growth in different types of cancers. A significant number of editing events in microRNAs
with a functional role in cancer are also reported. These editing sites could change the fate and function of microRNAs, either by
preventing target mRNA recognition or by dysregulating an off-target mRNA.
Conclusions: There are increasing shreds of evidence on the key role of RNA editing events in cancer initiation and progression.
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1. Context

Comprehensive analysis of cancer transcriptomes re-
vealed that despite the critical role of mutations in tu-
morigenesis, perturbation caused by epigenetic and post-
transcriptional modifications contributes to cancer pro-
gression (1). RNA editing is a pivotal post-transcriptional
and/or co-transcriptional modification essential for the de-
velopment of normal cells and is involved in a wide range
of biological processes (2). Editing events are mediated
through adenosine deaminases acting on RNA (ADARs) on
double-stranded RNA and expanding the transcriptome’s
diversity and the range of functions of RNA transcripts (3).

Theoretically, editing is capable of changing any nu-
cleotide to another type. In humans, the most frequent
type of RNA editing event is adenosine deamination to in-
osine, which is accomplished by ADARs proteins (A to I
deamination) (4, 5). The resulting inosine is interpreted as
guanosine (A to G conversion) by cell machinery and acts
as a single nucleotide mutation (6). Editing in the coding
region may occur with a nonsynonymous effect. On the
other hand, editing in non-coding sequences such as mi-

croRNA and 3′UTR of mRNAs is more frequent than in cod-
ing regions (7, 8). RNA editing in these sequences provides
the ability of time-specific and location-specific regulation
that changes cellular properties (9). Altogether, balanced
and regulated RNA editing is essential for the normal func-
tion of cells, while aberrant and dysregulation of this phe-
nomenon may deviate the fate of a normal cell (10).

2. Evidence Acquisition

Science Direct and PubMed databases were reviewed
from 2000 to 2020 and 2003 to 2020, respectively. These
databases searched using "RNA editing" and "cancer" key-
words. The current study aimed to review the role of RNA
editing in cancer.

3. Results

3.1. Editing Enzymes

A to G editing is mediated through adenosine deam-
inases acting on the RNA (ADAR) family of enzymes. Hu-
man cells express three kinds of ADARs: ADAR1, ADAR2, and
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ADAR3 (11). ADAR1 and ADAR2 form homodimers, whereas
ADAR3 does not form dimers. The first two are catalyt-
ically active enzymes and ubiquitously expressed, while
the latest is mainly expressed in the brain (12, 13). ADAR1
is expressed as two isoforms, ADAR1p110, and ADAR1p150.
ADAR1p110 edits dsRNA is in the nucleus, while ADAR1p150
editing is in the nucleus and cytoplasm. Expression of
ADAR1 is essential, and ADAR1-null mice showed substan-
tial overexpression of interferon and widespread apopto-
sis. In comparison, ADAR2-null mice live somewhat longer
than ADAR1 knockouts and are prone to seizures and die
young (14). The structure and sequence of ADAR3 are simi-
lar to those of ADAR1 and ADAR2. They share the same do-
mains, such as nuclear localization, deaminase, and RNA-
binding (15). It has been reported that ADAR3 may instead
act as a dominant-negative form of other ADARs (16).

3.2. Identification of Editing Sites

The development of next-generation sequencing
(NGS) technologies and open access data sharing in ge-
nomic research have provided inimitable opportunities
for genome-wide investigation of RNA editing sites (17).
There are two main strategies to identify RNA editing sites
using NGS technology. The straightforward but more ex-
pensive approach to discover RNA editing events requires
simultaneous genome and transcriptome sequencing in
the same sample (18). The indirect strategy compares tran-
scriptome sequence with the reference genome, therefore,
it needs RNA-Seq data alone, and it is more challenging
(19). Both approaches meet several challenges to the ac-
curate identification of RNA editing sites. Discrimination
of bona fide editing events from technical noise such as
sequencing errors and incorrect mapping is one of the
main drawbacks. On the other hand, biological noise such
as genomic polymorphisms and somatic mutations may
also be interpreted as editing sites (20). Alongside the
employment of NGS, researchers have developed another
technique called inosine chemical erasing (ICE). ICE is
designed for genome-wide profiling of A-to-I editing sites
through reverse transcription, PCR amplification, and
direct sequencing without comparing the sequence with
cDNA or reference genome (21).

3.3. Functional Impacts of Editing Sites

In recent years, a growing body of evidence has re-
vealed that RNA editing events are an important contrib-
utor to cancer pathogenesis. Given the location of edit-
ing found in the human transcriptome, these editing sites
could have different functional impacts on tumorigenesis
(22).

3.3.1. RNA Editing Role in the Pathogenesis of Cancer

Tumors benefit from editing sites via several mech-
anisms, most conveniently through nonsynonymous
codon changes (Figure 1). In this regard, antizyme in-
hibitor 1 (AZIN1) is one of the well-studied genes. A to G
editing leads to a serine to glycine conversion at residue
367 in AZIN1, which confers a gain-of-function phenotype
(23). Edited AZIN1 promotes stemness and appears to
drive the metastatic progression in colorectal cancer (24).
It is also reported that activation of AZIN1 RNA editing
increases the invasive potential of cancer-associated fi-
broblasts in colorectal cancer (25). The enhanced rate of
AZIN1 editing in gastric cancer is an independent prog-
nostic factor for poor overall survival and significantly
correlated with the presence of lymph node metastasis
(26).

Bladder cancer-associated protein (BLCAP), as a tumor
suppressor, prevents tumorigenesis by stimulating cell
apoptosis and inhibiting proliferation. ADAR1 edits sev-
eral sites across BLCAP, one of them located in the nu-
cleotide encoding the second codon with tyrosine to cys-
teine substitution effect (27). It has been reported that
editing events in the BLCAP YXXQ motif with nonsynony-
mous effect drive the progression of cervical carcinogene-
sis through regulating the STAT3 signaling pathway (28).

3.3.2. Anti-tumorigenic Functions of RNA Editing

On the contrary, RNA editing sites may have anti-
tumorigenic functions. Editing events in gamma-
aminobutyric acid receptor subunit alpha-3 (GABRA3)
decrease its expression on the cell surface and, conse-
quently, prevents AKT activation required for cell migra-
tion and invasion (29). A to G editing in insulin-like growth
factor-binding protein 7 (IGFBP7) at codon 95 results in
amino acid recoding from lysine to arginine. This sub-
stitution arrests tumor growth and induces apoptosis in
esophageal squamous cell carcinoma (30).

The Hedgehog signaling pathway is pivotal in normal
cell growth and differentiation, and the glioma-associated
oncogene homolog 1 (GLI1) is the central intermediary of
this pathway (31). In multiple myeloma, RNA editing of GLI1
leads to alteration of arginine to glycine at 701 positions.
These editing events inhibit the binding of its negative reg-
ulator (suppressor of fused homolog, SUFU) and, conse-
quently, stabilize GLI1 expression (32). Lazzari et al. demon-
strated that the malignant regenerative capacity of multi-
ple myeloma is associated with this arginine to glycine re-
coding and enhances the transcriptional activity of edited
GLI1 (33). Surprisingly, in medulloblastoma and basal cell
carcinoma, this editing event in GLI1 acts in the opposite di-
rection and inhibits tumorigenesis (16). These findings in-
dicate that distinction between pro-tumorigenic and anti-
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Figure 1. Schematic presentation of nonsynonymous editing impacts in cancer. A, a nonsynonymous editing event in the tumor suppressor gene’s coding sequence could
inactivate the resulting protein and lead to tumorigenesis; B, nonsynonymous editing events in activated oncogene may decrease protein activity and suppress cancerous
cells.

tumorigenic functions of editing sites could be indetermi-
nate even with the same recording event.

3.3.3. RNA Editing Role in Non-coding Sequences

In addition to RNA editing with the recoding effect, a
significant number of RNA editing events occur in the non-
coding parts of the genome (Figure 2). These sequences are
involved in the post-transcriptional and post-translational
regulation of gene expression, such as 3′UTRs and microR-
NAs (34). Sagredo et al. reported an increased number
of edited sites located at 3′UTRs of ATM, GINS4, and POLH
transcripts in tumors, which correlated with their mRNA
expression (35). A comprehensive study across 14 cancer
types suggested that changes in RNA editing levels in cod-
ing and 3′UTR regions could be a general mechanism to
promote tumor growth (36). In contrast, ADAR1 edits 3′UTR
of proto-oncogenes X-linked inhibitor of apoptosis (XIAP)
and MDM2 and negatively regulates their protein prod-
ucts, serving as an anti-tumor function (37).

A significant number of editing events in microRNAs
with a functional role in cancer have been reported. Edit-
ing events on microRNAs could change their faith and
function, either by preventing to regulate target mRNA
or by dysregulating an off-target mRNA (Figure 3). MiR-

455-5p has two different editing sites, which change the
function of this microRNA. Unedited form of mir-455-
5p inhibits cytoplasmic polyadenylation element-binding
protein 1 (CPEB1), tumor suppressor gene, and promotes
melanoma invasion and metastasis. On the other hand,
the edited form of miR-455-5p represses melanoma growth
and metastasis (38). Editing site on miR-589-3p changes
the target of this microRNA from the protocadherin 9
(PCDH9), a tumor suppressor gene, to ADAM12, a metallo-
proteinase gene. The overall result is promoting glioblas-
toma invasion (39). Editing of miR-378a-3p occurs only in
the non-metastatic but not in metastatic melanoma cells
and inhibits PARVA oncogene, thus prevents the progres-
sion of melanoma towards the malignant phenotype (40).
In glioblastoma cells, wild-type miR-376a promotes cell mi-
gration and invasion, while the edited form of this mi-
croRNA suppresses metastatic characteristics (41). Wild-
type miR-200b regulates zinc finger E-box binding home-
obox 1 and 2 (ZEB1 and ZEB2) expression and thus controls
metastasis. A pan-cancer study showed that edited miR-
200b could not inhibit ZEB1 and ZEB2, which results in cell
invasion and migration (42).
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Figure 2. The function of 3′UTR editing in cancer initiation and progression. A, editing events in 3′UTR of an oncogene affect the binding of regulating microRNA, which in
turn leads to increased expression of oncogene and tumorigenesis; B, an editing site in 3′UTR of tumor suppressor may determine it as the target of microRNA. A decreased
level of this tumor suppressor could drive the cell to cancer.

Figure 3. Schematic illustration of microRNA editing impact in gene expression. A, RNA editing in microRNA could change the target of that microRNA and subsequently
decrease off-target mRNA expression; B, editing events interfere in microRNA base-pairing with its target mRNA and increases the expression level of target mRNA.

4. Conclusions

This study demonstrated that RNA editing is linked
to cancer pathogenesis by either site specific editing of
tumor-promoting/suppressing genes or by transcriptome-
wide RNA editing. An increasing body of evidence indi-
cates that RNA editing events may play an essential role in

cancer initiation and progression. Editome profiling stud-
ies all pointed to a significant number of editing sites in
coding and non-coding sequences. Some of these editing
sites have been linked to cancer status and prognosis. Edit-
ing events with nonsynonymous effects and editing sites
in 3′UTRs and microRNAs have attracted the researcher’s
attention.
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