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Abstract

Context: During the past two decades, the development of drug delivery systems based on nanomaterials has yielded nanocarriers
for smart application in nanomedicine to treat diseases.
Evidence Acquisition: The current review presents a summary of some advances in the development and application of nano-
delivery systems for improving the efficacy of conventional drugs and reducing their adverse effects through the production of
smart delivery carriers with targeting moieties and controlled release strategies used in therapy. The searches were conducted in
ScienceDirect, Scopus, Google Scholar, and PubMed databases for relevant studies.
Results: As reviewed in the present paper, the investigated targeted drug delivery systems have proven to be more effective than free
drugs by enhancing efficacy and reducing the systemic toxicity of therapy. In addition, many studies have shown remarkable ad-
vantages of nanoscale drug delivery carriers regarding the possibility to improve properties such as solubility, stability, absorption,
diffusivity, bioavailability, targeting, and controlled release of drugs.
Conclusions: Despite many advantages of nanoscale drug delivery systems reported in the medical literature, deeper research
about the composition, synthesis, characteristics, and clinical applications in this area is needed.
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1. Context

Efficient drug delivery with nanocarriers for effec-
tive and safe therapy has been developed during the last
decades. Nanomaterial-based drug delivery systems (DDS)
can deliver drugs to the target diseased cells in a controlled
release manner. Nanomaterials (NMs) and nanoparticles
(NPs) can be defined as the material with structures on
the nanoscale dimension (between 1 and 100 nm) (1). As
known, NMs and NPs exhibit tunable and unique physico-
chemical, mechanical, electrical, and biological character-
istics. These special properties are due to the decreased size
and increased surface area of them. As a result of the large
surface area to volume ratio, NMs show quantum effects
and special properties (2). Currently, nanomedicine has re-
ceived attention by utilizing NMs and nanostructures as
DDS (3). Drug delivery systems can deliver drugs to tar-
get tissues in a controlled release manner. Drugs can be
chemically conjugated or physically encapsulated in these
nanocarriers (4-6). The small size and high surface area of
nanomaterials allow them to enter cells and interact with
biomolecules easily. Improving absorption, bioavailabil-
ity, and stability can be achieved by using nanotechnol-
ogy in drug delivery, and therefore overcome the defects

of common DDS.

Nanostructured delivery carriers can protect encapsu-
lated drugs from in vivo degradation. On the other hand,
the first-pass effect can be prevented by using DDS, espe-
cially in the case of water-insoluble drugs (7). The most
widely used nano-based drug delivery carriers are micelles
(8, 9), liposomes (10, 11), carbon nanotubes (12), solid lipid
nanoparticles (SLN) (13, 14), dendrimers (15), mesoporous
silica NPs (16), gold NPs (17, 18), quantum dots (QD) (19),
and superparamagnetic iron-oxide nanoparticles (SPIONs)
(20, 21). Polymeric nanomicelles are widely used as drug
delivery systems. Some notable advantages of these carri-
ers are biocompatibility, biodegradability, ease of prepara-
tion, and good loading and delivery efficacy (22-24). Am-
phiphilic polymers can be easily self-assembled into na-
nomicelles. Diblock copolymers composed of hydrophilic
and hydrophobic blocks with variable lengths can encap-
sulate hydrophobic drugs in the core of the nanomicelle
and/or attach hydrophilic drugs on the surface in the
aqueous medium (25). Some common polymers used in
the composition of nanomicelles are poly(ethylene glycol)
(PEG) (26), N-(2-hydroxypropyl) methacrylamide (HPMA)
(27), poly(l-lactic acid) (PLA) (28), poly(lactic-co-glycolic
acid) (PLGA) (29), polycaprolactone (PCL) (30), and chi-
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tosan (31, 32). Most polymeric nanomicelles investigated
for drug delivery applications have been used successfully
in cancer. Examples of these nanomicelles are Genexol PM
(33), NK911 (34), NK105 (35), NK012 (36), and NC6004 (37).

Many anticancer drugs are hydrophobic compounds,
and nanomicelles with amphiphilic copolymers can solu-
bilize them without using harmful organic solvents. On
the other hand, targeting ligands on the surface of mi-
celles target a specific receptor on cancerous cells and in-
crease anticancer efficacy of the drug by accumulation
in the site of action, on top of cell uptake enhancement.
Nanoliposomes (also known as lipid-based nanovesicles)
are versatile DDS made of bilayer lipids with an aque-
ous reservoir. This composition allows the delivery of
hydrophilic and hydrophobic drugs. Nanoliposomes are
good candidates for various applications in nanomedicine
and nanobiotechnology because of their safety, stability,
biocompatibility, and biodegradability. In comparison
with polymeric nanomicelles, nanoliposomes have an im-
proved drug release profile. Some nanoliposome formu-
lations in drug delivery studies are DOXIL/Caelyx (38), My-
ocet (39), Depocyt (40), Daunoxome (41), CPX-1 (42), and
CPX-571 (43).

One of the most important aspects of nanoscale DDS
is the ability of targeting, which makes a smart DDS that
only affects the diseased tissue. Nanoscale targeted drug
delivery systems increase the concentration of the drug
in the site of action, improve its efficacy, and reduce ad-
verse side effects of the encapsulated drug. These advan-
tages have led to targeted nanoscale DDS being highly re-
garded in research and therapeutics (44-46). The knowl-
edge about diseases at the molecular level will help us in
better targeting DDS development. Some modifications on
the surface of DDS can cause a better accumulation of DDS
near the diseased cells and improved uptake into the cells.
These modifiers or ligands have widely been used in drug
delivery investigations as targeting agents. This strategy is
known as active targeting. In this approach, the imposed
ligands on the surface of DDS bind with high affinity to
specific components on the surface of diseased cells. Some
targeting moieties investigated include antibodies, folate,
lectins, peptides, aptamers, transferrin, lactobionic acid,
oligosaccharides, and albumin (47).

Nanostructured DDS can also provide controlled drug
release by applying some modifications in the composi-
tion. Uncontrolled drug release may lead to the release
of the encapsulated drug in the wrong site and conse-
quently reduce the appropriate amount of the drug in the
target tissue and increase its adverse side effects. In the
case of nanoliposomal carriers, hydrogel embedded inside
the liposome could successfully control the release of the
drug. Another approach is the pH-sensitive release with

polymeric nanomicelles in cancer therapy. These nanocar-
riers release the drug specifically in an acidic pH of the
tumor environment. Polymers with ionizable functional
groups are unstable in response to pH variations and thus
release the encapsulated or conjugated drugs by structure
destruction. Another manner is an acid-labile linker that
can be used between copolymers and the drug to achieve
controlled release in tumoral acidic pH. These two pH-
sensitive release manners are shown in Figure 1. Some
acid-labile bonds investigated in controlled release studies
are hydrazone, oxime, imine, orthoester, and vinyl ether
bonds. These two approaches have been extensively stud-
ied (48, 49), and the results have shown that in the latter
approach, the drug release was lower than in the former
approach because the polymeric structure of DDS was not
destructed. Advances in nanoscale DDS are presented in
this review.

2. Evidence Acquisition

The current review presents a summary of some ad-
vances in the development and application of nano-
delivery systems for improving the efficacy of conven-
tional drugs and reducing their adverse effects through
the production of smart delivery carriers with targeting
moieties and controlled release strategies used in therapy.
The literature searches were conducted in ScienceDirect,
Scopus, Google Scholar, and PubMed databases for relevant
research articles up to 2020. The following keywords were
used to identify the relevant articles: Drug delivery sys-
tems, nanocarriers, nanomaterials, nanomedicine, target-
ing delivery, and controlled release.

3. Results

The results listed in Table 1 were extracted from se-
lected original reports.

4. Conclusions

The current review highlights advances in drug deliv-
ery through NM-based drug delivery systems. The com-
mon types of advanced nanocarriers include liposome
formulations, polymeric carriers, micellar formulations,
nanocrystals, protein nanoparticles, and many others for
efficient transport and release of drugs at the disease
site. A growing number of research studies in this area
showed that nano-delivery carriers play an important role
in the improvement of some types of therapy and can
effectively overcome the problems of solubility, bioavail-
ability, stability, targeting, and controlled release, as well
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Figure 1. A schematic representation of two pH-sensitive release mechanisms of polymeric nanomicelles; 1, pH-induced structure ionization and destruction leads to drug
release; 2, The cleavage of the acid-labile linkage between the polymer and drug leads to drug release.

Table 1. Some Examples of Nanoscale Drug Delivery Systems, Applications, and Advantages in Nanomedicine

Nanocarrier + Drug Indication (s) Outcomes

Liposomal daunorubicin (DaunoXome®) (50) Kaposi’s sarcoma Enhanced delivery to the tumor site; Decreased side
effects and systemic toxicity.

Liposomal amphotericin B lipid complex (Abelcet®)
(51)

Fungal infections Decreased toxicity

Micellar estradiol (Estrasorb™) (52) Menopausal therapy Improved efficacy by controlled delivery of the
therapeutic agent.

Micellar DOX-Hyd-PLA-PEG-FOL (53) Ovarian cancer Targeted and controlled release of the drug, improved
anticancer efficacy, decreased systemic toxicity.

Albumin-bound paclitaxel Nanoparticles
(Abraxane®) (54)

Breast cancer; NSCLC; Pancreatic cancer Enhanced solubility; Increased delivery to the tumor.

Morphine sulfate nanocrystals (55) Psychostimulant Improved drug loading and bioavailability; Slow release.

Paliperidone palmitate nanocrystals (56) Schizophrenia; Schizoaffective disorder Extended-release of drugs with low solubility.

Dantrolene sodium nanocrystals (57) Malignant hypothermia Administration of higher doses of the drug.

Ferumoxytol SPION with polyglucose sorbitol
carboxymethylether (58)

Chronic kidney failure with iron deficiency Decreased number of doses, extended-release

Micellar P123-PAE/Cur (59) Cancer therapy Longer circulation, pH-responsive controlled release,
increased accumulation at the tumor site.

Micellar DTX-LEV-Hyd-PLA-PEG-FOL/DTX (60) Ovarian cancer Targeted and controlled release of the drug, improved
anticancer efficacy, decreased systemic toxicity.

mPEG-TK-PLGA/ atorvastatin (61) Acute kidney injury Great ability to ROS-responsive drug release, target
mitochondria, superior antioxidant, and anti-apoptotic
activity.

C-dots/ transferrin+ epirubicin, Temozolomide (62) Glioblastoma brain tumors Targeted delivery, improved anticancer efficacy,
synergistic effects by two-drug combination in the
nanocarrier.

SLN + gelling system/MOX (63) Psychostimulant Improved encapsulation efficiency, controlled release of
the drug, prolonged action in a sustained manner.

Abbreviations: DOX, doxorubicin; Hyd, Hydrazine; PLA, poly(lactic acid); PEG, polyethyleneglycol; FOL, folate; P123, (EO20PO70EO20) amphiphilic block copolymer; PAE,
poly(β-amino ester); Cur, curcumin; DTX, docetaxel; LEV, levulinic acid; TK, thymidine kinase gene; PLGA, polylactic-co- glycolic acid; SLN, solid lipid nanoparticles; MOX,
moxifloxacin; NSCLC, non-small cell lung cancer.
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as decrease side effects of drugs. Active targeting and
stimuli-responsive controlled release of drugs are very
useful strategies for smart drug delivery by nanocarri-
ers. However, the complexity of in vivo environments can
influence the efficacy of nanoscale delivery carriers for
treatment purposes. However, with the deep and precise
study of the molecular mechanism of diseases and more
advances in nanotechnology, the DDS and their applica-
tions in nanomedicine can be improved. Nanomedicine
is among one of the most attractive science branches, and
in recent years, a great deal of research has been done
on drug delivery systems based on nanotechnology. De-
spite many advances in the synthesis and application of
drug carriers, there are still weaknesses. More pharma-
ceutical studies are needed in the case of size, composi-
tion, surface functional groups, drug loading, targeting
agents, and controlled release factors in future nanocarri-
ers. Another approach is to consider the potentially haz-
ardous effects of nanocarriers on humans and the envi-
ronment. In other words, risk and benefit must be con-
sidered simultaneously. Although many studies have been
done in this area, additional research is needed. The future
of nanomedicine with targeted delivery and controlled re-
lease of drugs is a promising therapy.
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