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Abstract

Objectives: This study aimed to investigate the effects of six-week continuous training (CT) and high-intensity interval training
(HIIT) protocols on brain superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities and their associa-
tions with short-, mid-, and long-term memory in albino Wistar rats.
Methods: In this study, 18 male albino Wistar rats (5 months old) were randomly assigned to three equal (n = 6) groups of sedentary
control (SC), CT, and HIIT. Both CT and HIIT regimens were performed for 6 consecutive days per week for 6 weeks.
Results: Both HIIT and CT regimens increased short-, mid-, and long-term memory, and the alterations were greater following HIIT
than CT. In addition, both HIIT and CT regimens significantly increased SOD activity, with a higher elevation following HIIT than
CT. Moreover, brain SOD activity positively correlated with short-, mid-, and long-term memory. However, neither CT nor HIIT had a
significant effect on brain GPX and CAT activities.
Conclusions: The HIIT regimen is highly potential, as opposed to the CT regimen, to improve memory function through a greater
increase in the SOD activity of the brain.
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1. Background

It has been considered that exercise contributes to
brain health by promoting synaptic plasticity, antioxidant
properties, and survival of neurons (1-3). Improved brain
health and memory function are the products of enhanced
antioxidant systems and subsequently lowered oxidative
stress effects in exercise training (4).

Superoxide dismutase (SOD), catalase (CAT), and glu-
tathione peroxidase (GPX) act as the main antioxidant en-
zymes that scavenge reactive oxygen species (5, 6). The
literature shows contradicting results concerning the re-
sponse of antioxidant enzymes to exercise training. Ac-
cording to the evidence, 12 weeks of high-intensity in-
terval running resulted in more GPX activity, compared
to moderate-intensity continuous running, in adult pa-
tients with type 2 diabetes mellitus; however, no dramatic
changes were observed in SOD activity (5).

Moreover, it has been demonstrated that continuous
training (CT) at moderate intensity and interval training at
high intensity similarly increase SOD concentration in the
cardiac tissue of infarcted rats; nevertheless, the increase
in GPX following interval training is significantly superior
to that of the continuous one (7). A reduction in oxida-
tive stress responses to short-term high-intensity interval
training (HIIT) was attributed to improved CAT status in
healthy subjects (8). In another study, an improved SOD ac-
tivity with no significant change in GPX was shown follow-
ing resistance training at moderate intensity in untrained
men (9).

At present, exercise training is recognized as an effi-
cient and low-cost tool to counteract and treat several neu-
rological diseases (10, 11). In contrast to many pharmaco-
logical approaches for the treatment of memory loss, exer-
cise training has no serious side effects. In reality, prescrib-
ing the best approach needs more understanding of the ef-
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fects of different exercise training regimes on memory.

2. Objectives

Therefore, the current study aimed to firstly compare
the effects of high-intensity interval and continuous proto-
cols on memory function and secondly demonstrate their
associations with antioxidant enzyme activity in the rat
brain.

3. Methods

3.1. Animals

This experimental study was reviewed and approved
by the Ethics Committee of Sport Sciences Research Insti-
tute of Iran (code: IR.SSRC.REC.1399.101). For this study, 18
male albino Wistar rats (5 months old) were provided from
the Animal Laboratory at Zahedan University of Medical
Sciences, Zahedan, Iran, and randomly assigned to three
equal (n = 6) groups of sedentary control (SC), CT, and HIIT.

3.2. Continuous and Interval Exercise Training Protocols

Both CT and HIIT regimens were followed in the Animal
Laboratory of Zahedan University of Medical Sciences for 6
consecutive days per week for 6 weeks, according to Table 1
(11).

3.3. Retention of Passive Avoidance Task

The rats were subjected to a one-trial step-through
paradigm in grid floor and wooden-wall shuttle box imme-
diately after the last session of CT and HIIT regimens at the
end of the protocol. The shuttle box consists of a light and
dark compartment with a dimension of 80 × 20 × 20 cm
(12). The assessment of short-, mid-, and long-term mem-
ory was carried out by registering latency in entering the
dark compartment following 6, 24, and 48 h after a three-
second electric shock to the foot (AC, 60V, 1 mA current at
50 Hz), respectively (12, 13).

3.4. Biochemical Assays

The animals were sacrificed by decapitation (ketamine,
60 - 80 mg/kg; xylazine, 8 mg/kg; IP) 48 h after the last ex-
ercise session (10). The freshly removed brain was washed
by normal saline and rapidly submerged in liquid nitro-
gen for 1 min before it was stored at -80°C. A total of 40 -
55 mg of powdered brain tissue by liquid nitrogen was dis-
solved and homogenized in 1 mL of 1X phosphate-buffered
saline containing 1% Protease Inhibitor Cocktail (#GB-326-
1, ProBlockTM-50, Gold Biotechnology CO, USA) to inhibit
protease activity (11). The mixture was thoroughly vortexed

(StuartMixers Vortex, SA8TM, England) and centrifuged (Ep-
pendorf Centrifuge, Mini SpinR, Germany) at 5000 × g at
2°C - 8°C for 5 min, and the supernatant of the brain was col-
lected. The SOD, GPX, and CAT activities and malondialde-
hyde (MDA) level in the supernatant were measured using
a commercial kit (BiocoreDiagnostik Ulm GmbH, Veltliner-
weg 29, Germany). The values were expressed in the gram
of tissue weight.

3.5. Statistical Analysis

The SPSS software (version 23.0, SPSS Inc, Chicago, USA)
was used for analysis. After screening with the Shapiro-
Wilk and Levene’s tests, one-way analysis of variance, Bon-
ferroni post hoc, and Pearson’s correlation coefficient test
were used.

4. Results

Figure 1 illustrates the results for short-, mid-, and long-
term memory. Both HIIT and CT regimens increased short-
, mid-, and long-term memory, and the alterations were
greater following HIIT than CT. In addition, Figure 2 depicts
brain SOD, GPX, and CAT activities. Both HIIT and CT regi-
mens significantly increased SOD activity, with a higher el-
evation following HIIT than CT. Nevertheless, no difference
was shown for GPX and CAT between the groups. Figure 3
shows the correlation of brain antioxidant enzyme activ-
ity with short-, mid-, and long-term memory. Brain SOD ac-
tivity positively correlated with short-, mid-, and long-term
memory. However, neither CT nor HIIT had a significant ef-
fect on brain GPX and CAT activities. In addition, a compar-
ison of brain MAD levels among SC, CT, and HIIT groups is il-
lustrated in Figure 4. indicating no difference between the
groups.

5. Discussion

Both HIIT and CT improved short-, mid-, and long-term
memory and brain SOD in rats; nonetheless, the HIIT reg-
imen had a greater impact than CT. However, brain GPX,
CAT, and MDA levels did not significantly change in the HIIT
and CT groups. Moreover, a significant positive correlation
was observed between brain SOD activity, as an antioxidant
marker, and short-, mid-, and long-term memory, as a cog-
nitive function.

Several studies have shown that exercise has the poten-
tial to enhance memory function in healthy and anxious
patients (3, 14). The findings of the present study are in line
with the results of other studies suggesting an improve-
ment in both short- and long-term memory following ex-
ercise training (3, 14). In addition, it has been reported that
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Table 1. Continuous Training and High-Intensity Interval Training Protocols

Training Days Protocol Overload

Continuous training Even 27 m/min (80% VO2max) 2 min each day reaching 60 min in the following
4th week

High-intensity interval training

Even 54 m/min for 30 sec (100% VO2max) and active rest
for 60 sec at 16 m/min; active rest was realized
between intervals for 60 sec at a speed of 16
m/min

3 repetitions and 4.5 min each day while
increasing to 20 repetitions and 30 min in the 4th
week

Odd 40 m/min for 3 min (95% VO2max), while the active
recovery phase was 60 sec at 16 m/min with 2
repetitions and 8 min.

6 repetitions and 24 min in the 4th week

SC CT HIIT

*
*

*

*#
*#

*#

Short-Term

Mid-Term Memory

Long-Term Memory

300

250

200

150

100

50

0

Pa
ss

iv
e 

A
vo

id
an

ce
 (s

ec
)

Figure 1. Animals’ short-, mid-, and long-term memory in high-intensity interval training (HIIT), continuous training (CT), and sedentary control (SC) groups at the end of
protocols; asterisk (*) Indicating a significant difference between groups (P < 0.05).
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Figure 2. Comparison of brain superoxide dismutase (SOD) (A), glutathione peroxidase (GPX) (B), and catalase (CAT) (C) activities among sedentary control (SC), continuous
training (CT), and high-intensity interval training (HIIT) groups; asterisk (*) indicating a significant difference between groups (P < 0.05).
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Figure 3. Correlation between brain antioxidant enzyme activity and short-, mid-, and long-term memory following intensive interval and continuous exercise training

forced treadmill exercise prevents cognitive deficit in the
Morris spatial water maze task following chronic cerebral
hypoperfusion in rats (15). In two human studies, it was
demonstrated that running on the treadmill at moderate
(14) and high intensity (3) with a short recovery period en-
hanced short- and long-term episodic memory.

Moreover, the findings of the current study demon-
strated an improvement in memory function following
both interval and continuous running exercise at high in-
tensity. Less escape of learned vocabularies from memory

following cycle ergometer at high intensity than low in-
tensity has been attributed to the greater release of neu-
rotrophic factor from the brain (16). It has been shown
that exercise-induced neurotrophic factor in various cor-
tical areas (17) mediates memory progress by increasing
cerebral oxygenation and neurogenesis (1). In addition, it
has been demonstrated that the positive effects of long-
term supervised exercise on verbal learning and memory
are mediated by the enhancement of cardiovascular fit-
ness in middle-aged adults (16).
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Figure 4. Comparison of brain malondialdehyde (MAD) levels among sedentary control (SC), continuous training (CT), and high-intensity interval training (HIIT) groups

In a study, the improvement of memory function has
been attributed to reversing hippocampus volume loss
following long-term aerobic exercise (18). Significant in-
creases in both gray and white matter regions of the pre-
frontal cortex in exercise training are associated with cog-
nition enhancement and healthy functioning of the cen-
tral nervous system in sedentary community-dwelling vol-
unteers (19). Finally, van Praag et al. (20) have reported en-
hancement in learning, retention, and hippocampus neu-
rogenesis in aged rodents by voluntary wheel running.

It has been assumed that exercise-induced cognitive
improvements are mediated by enhancement in lowering
lipid peroxidation (21) and brain antioxidant system (22).
The results of the present study demonstrated that both in-
tensive interval and continuous running on the treadmill
increased brain SOD activity. Consistent with the results of
the present study, it has been shown that swimming train-
ing (8 weeks; 5 days/week; 30 min/day) attenuates brain
MDA levels by increasing brain SOD activity in Wistar rats
(23). Furthermore, Souza et al. have reported that 60 min
swimming per day for 6 weeks attenuates reactive oxygen
species by raising SOD activity in the cerebral cortex of rats
(22).

In a study conducted by Shirvani et al. (24), the lev-
els of SOD significantly increased after a session of low-,
moderate-, and high-intensity training while preventing

the increase in the MDA level of the cerebral cortex. How-
ever, the benefits of high-intensity training were higher
than others. The aforementioned study investigated the
impact of an acute exercise session; in addition, memory
function was not assessed (24).

Nevertheless, the findings of the present study are in-
consistent with other studies in which the insignificant
change in SOD activity in the hippocampus, striatum, and
cerebral cortex of stroke rat models is attributed to low-to-
moderate-intensity exercise (15). The SOD converts the su-
peroxide anion into a molecule of hydrogen peroxide and
oxygen, thereby minimizing the formation of hazardous
free radicals and lipid peroxidation (25). Brain-derived
neurotrophic factor (BDNF) brings about an increase in the
expression of SOD in angiogenic cells (26).

In addition, it has been shown that the continuous in-
fusion of BDNF inhibits the acute down-regulation of SOD
expression in old rats suffering from spinal cord injury
(27). Through an increase in SOD activity, BDNF shields
against free-radical-mediated excitotoxicity injury, which
sequentially decreases MDA levels (28) and improves mem-
ory function (23). Therefore, the findings of the current
study propose that the changes in brain SOD may corre-
late with enhancing brain BDNF following interval train-
ing than CT.

The results of the present study showed no signifi-
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cant change in brain CAT and GPX activities following
both intensive interval training and CT. Inconsistently, a
study demonstrated a more significant increase in GPX
activity in intensive interval training than continuous
moderate-intensity training in a post-myocardial infarc-
tion rat model (7). Although GPX and CAT activities were re-
duced in the hippocampus of streptozotocin-induced rats
with diabetes mellitus, the activities of these antioxidant
enzymes have been shown to significantly increase after an
eight-week running protocol on a treadmill at low to mod-
erate intensity (29). Overall, the discrepancy in results may,
at least in part, be due to the differences in subjects and tis-
sue type.

Marcus et al. (30) have reported that SOD, GPX, and
CAT antioxidant enzyme activities significantly reduce in
frontal, temporal, and cerebellar cortex regions of patients
with Alzheimer’s disease. Moreover, a correlation has been
shown between non-enzyme antioxidant improvements
and memory progression in old and very old subjects (31).
In this regard, the present study revealed a significant pos-
itive correlation between brain SOD enzyme antioxidant
and short-, mid-, and long-term memory following inten-
sive exercise training.

In another study, it has been revealed that MDA high
levels are associated with impairment in visual-spatial and
auditory-verbal working memory as well as short-term and
delayed declarative memory (21). Additionally, it is be-
lieved that improvement in cognitive performance follow-
ing forced treadmill exercise is mediated by a reduction in
hippocampus MDA levels in stroke rat models (15). How-
ever, it seems that the results of the current study were not
affected by lipid peroxidation since brain MDA levels did
not change following intensive running.

5.1. Conclusions

Intensive interval training can bring about more en-
hancements in rat’s short, mid-, and long-term memory
through enhancement in brain SOD level. This finding sug-
gests that dividing training sessions into various bouts of
exercise with maximum effort may result in substantial
memory gains.
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