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Dear Editor,
The PGC-1α protein is strongly affected by changes in

SIRT3, and upregulation of SIRT3 increases the mitochon-
drial biogenesis. Due to the role of the mitochondria as
the main organelles in energy production, its dysfunction
(decrease in energy storage and mitochondrial-mediated
apoptosis) may be involved in the development of degen-
erative diseases such as s arcopenia (severe loss of mus-
cle mass). Therefore, mitochondrial dysfunction is closely
related to cell death and consequently reduced life ex-
pectancy. Affecting PGC-1α and SIRT3, exercise and calorie
restriction increase the processes related to mitochondrial
biogenesis and decrease reactive oxygen species (ROS) pro-
duction (1).

SIRT3 is a member of NAD+-dependent deacetylase fam-
ily proteins (2), regulating several cellular activities such
as metabolic homeostasis (3) and principal cellular re-
sponses (3). SIRT3 increases cellular respiration while re-
ducing the production of ROS (4). Ahn et al. indicated
that SIRT3 regulated mitochondrial oxidative capacity (1),
which is associated with mitochondrial-mediated protec-
tion against apoptosis (5). These results support the pos-
sibility of exercise-induced mitochondrial oxidative ca-
pacity and mitochondrial-mediated apoptosis in skeletal
muscle (6), suggesting that SIRT3 is associated with cell
longevity.

On the other side, PGC1α regulates genes involved in
determining the type of muscle fiber (7). It also protects
muscles against atrophy (8). Calorie restriction and exer-
cise increase the expression of PGC1-α and SIRT3 (9). They
also reduce cellular energy levels and increase NAD+ levels.
Since SIRT3 is NAD+-dependent, such conditions increase
the activity of SIRT3 and its downstream targets (9).

This theorem proves that endurance exercises regu-

larly create adaptation in the cardiovascular and muscular
systems. The most important intracellular response to en-
durance exercises is an increase in the number and size of
mitochondria. This situation increases the activity of ox-
idative enzymes in muscle cells (10).

Turning to the authors’ previous research (11, 12), con-
tinuous swimming (CT) and high-intensity interval swim-
ming (HIIT) significantly increase the amount of PGC-1α
in slow-twitch skeletal muscles soleus (SOL); however, the
consequences of upregulation in PGC-1α are not totally un-
derstood and calls for more molecular research.

The authors also showed that CT and HIIT significantly
increased the levels of the SIRT3 protein in slow-twitch
muscle (SOL) (11, 12).

In our previous studies, a non-significant increase in
reduced glutathione/oxidized glutathione (GSH: GSS) was
observed in SOL muscles following HIIT exercise (11, 12). It
can be related to various factors, including ROS produced
by exercise and its measurement time. This phenomenon
indicates the ability of the antioxidant system in SOL to
maintain the balance of intracellular oxidative stress (13).
This ability could be attributed to the greater compatibil-
ity of slow-twitch muscles with these two types of training,
where the expression of the protein associated with the
longevity and the antioxidant system of these muscles is
further improved, and more free radicals produced by aer-
obic oxidation within the mitochondria are further neu-
tralized.

Our previous findings (11, 12) suggest that 2 impor-
tant proteins involved in mitochondrial biogenesis (PGC-
1α and SIRT3) increase significantly following both HIIT
and CT training in slow-twitch muscle tissue, which could
potentially improve cell longevity. No significant increase
in the GSH: GSSG level was also observed in SOL muscles fol-
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lowing both exercises (CT and HIIT). This indicates the ef-
fect of both exercises on improving the oxidative capacity
of SOL muscle fibers. Thus, HIIT exercise can be as effective
as CT in improving mitochondrial biogenesis of muscle tis-
sue, creating aerobic adaptations, increasing oxidative ca-
pacity, cell health, and ultimately longevity and preventing
aging. Therefore, it can be a good alternative to traditional
endurance training.
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