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Review Article
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Abstract

Context: Artificial intelligence refers to a set of systems that are capable of performing functions similar to human intelligent
functions. Today, artificial intelligence has been successfully incorporated into clinical decision support systems (CDSS).
Evidence Acquisition: The current study aimed to briefly present a narrative mini-review on clinical reasoning and artificial
intelligence. Data were gathered from Google Scholar, ScienceDirect, and PubMed databases using the "clinical decision support
system, artificial intelligence, and clinical reasoning" keywords.
Results: Clinical decision support systems are divided into two categories: Knowledge-based and data-driven. The first category
is called the rule-based expert system, and the second category is also named the machine-learning system. The usefulness of the
mentioned systems and artificial intelligence in interpreting algorithmic and statistical information, where the human element
can easily make a mistake, is that they are much more efficient and work with fewer errors. However, when it comes to dealing with
a patient and his complaints and symptoms, because of the requirement for clinical judgment, the human element works much
better in obtaining a mental image of the patient’s condition. Artificial intelligence is specifically used in scenarios such as the
diagnosis of electrolyte disorders, interpreting ECG findings, and recognizing the causes of myocardial hypertrophy. Nonetheless,
artificial intelligence has challenges, such as a lack of responsibility for medical decisions and treatment errors.
Conclusions: Referring to the above-mentioned benefits and challenges of artificial intelligence, artificial and human intelligence
cannot be superior to each other, and both have an irreplaceable role in clinical decision-making. The new view is that the goal
of CDSS is to help the physician make better decisions by processing vast pieces of information as a whole entity rather than
individually.
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1. Context

In today’s world, due to the expansion of science
and the complexity of decision-making, the use of
information systems, especially artificial intelligence
systems, has become more valuable in supporting
decision-making. Artificial intelligence refers to a set
of systems that are capable of performing functions
similar to human intelligent functions (such as analyzing
complex problems, simulating the stages of thinking
and reasoning, learning science, and the ability to
reason to find answers to problems) (1). Introducing
artificial intelligence systems to medicine is one of the
aspects of the digitalization of society. According to
developers, policymakers, and medical professionals,
artificial intelligence can make great contributions to
health care and is expected to improve health care by
reducing the workload of health staff and increasing the

quality of clinical decision-making. Therefore, this type
of intelligence is often proposed as a solution to face
complex healthcare challenges in the future (2). Artificial
intelligence has the potential to make use of vast amounts
of genomic, biomarker, and phenotypic information.
Enormous health data, from birth information to health
records, exist throughout the health system and can
be used to increase the safety and quality of clinical
care decisions. Today, artificial intelligence has been
successfully incorporated into clinical decision support
systems (CDSS) with great potential to change almost
all aspects of medicine (3, 4). These systems are created
to improve healthcare services by facilitating targeted
medical decision-making based on available knowledge,
patient information, and health information (5). Due
to an exponential increase in the amount of available
data, the diversity of therapeutic options, and the
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rapid development of medical technologies, there is
an immediate need for designing CDSS, which can be a
valuable tool for providing medical care according to
patients’ preferences and their biological characteristics.
One of the important needs of today’s societies is to
personalize medicine in order to improve treatment
outcomes, save money, and prevent unnecessary
therapeutic measures. Therefore, patients can reap
benefits from the pile of human knowledge, clinical
expertise, diagnostic guidance, treatment modalities, and
supervision (6).

Clinical decision support systems are classified
based on the underlying technology (rules, deep
learning, probabilistic models, genetic algorithms, and
reinforcement learning). Also, in terms of functionality,
there are different types of CDSSs that support different
clinical decisions, including warning and reminder
systems (such as patient monitors), monitoring the
execution of orders during patient care, identifying drug
interactions, controlling chronic diseases, diagnostic
support, suggesting clinical diagnoses, and scheduling
therapeutic plans. In addition to diagnosis and treatment,
CDSS can play a role in predicting a specific disease,
interpreting radiology images and pathology findings,
optimizing therapeutic doses, and performing screening
and preventive care (2). The rapid growth of artificial
intelligence, machine learning, and computerized CDSS,
along with the increase in the amount of clinical data,
has increased interest in their potential applications
in providing comprehensive healthcare services.
Computerized CDSS refers to any software aiming to
help doctors and patients make a specific decision based
on dynamic knowledge in clinical decision-making and
patient information (6).

2. Evidence Acquisition

Due to the rapid increase in the amount of available
health data, the diversity of therapeutic options, and
the fast development of medical technologies, there is
a great need for designing CDSSs. The current study
aimed to briefly present a narrative mini-review on
clinical reasoning and artificial intelligence. Data were
gathered from Google Scholar, ScienceDirect, and PubMed
databases, using the "clinical decision support system,
artificial intelligence, and clinical reasoning" keywords.

3. Results

3.1. Benefits and Challenges

Clinical decision support systems are divided into two
categories: knowledge-based and data-driven. The first

category is also called the rule-based expert system, and
the second category is known as the machine-learning
system. An example of the first category includes online
guidelines such as the Up-to-date (7). Systems in the second
category are based on enormous input information
enabling them to identify a specific pattern and help
diagnose a disease (for example, Isabel’s online diagnosis
database). These systems mostly work in the field of
visual information and the stored data obtained from
a large number of clinical cases (2, 7). The usefulness
of the mentioned systems and artificial intelligence in
interpreting algorithmic and statistical information,
where the human element can easily make a mistake,
is that they work much more efficiently and with fewer
errors. However, when it comes to dealing with a patient
and his complaints and symptoms (such as when there is
a need for clinical judgment), the human element works
much better in obtaining a mental image of the patient’s
conditions (7).

One of the benefits of CDSS is a reduction in the
incidence of prescription errors and drug side effects. Of
course, in relation to this topic, one of the weaknesses
of CDSS is the high rate of unimportant warnings. These
systems can help provide less expensive treatments and
reduce the use of paraclinical tests and the workload
of health care staff. However, the costs of purchasing
and operating such systems in the long term should
be balanced against their usefulness. In fact, one of
the challenges of artificial intelligence systems is their
considerable costs (5).

Collecting, interpreting, and matching a patient’s
health information can be conducted by humans because
artificial intelligence delivers weaker performance in
collecting such information compared to a doctor.
Nevertheless, artificial intelligence systems can be used to
gather disease-related information (2).

In a study conducted in 2014 by Zuccotti and his
colleagues, the role of CDSS systems such as Isabel,
Up-to-date, DX plain, and Visual Dx was investigated in
reducing clinical risks and errors, noting that about half
of the clinical errors that imposed additional costs of over
40 millions of dollars on the healthcare system could be
potentially prevented using these systems (8).

Another point of concern is the issue of responsibility.
The doctor is accountable when dealing with a patient,
concluding on a clinical diagnosis, and prescribing
treatments. Making a decision about a patient using an
evidence-based medical process can fundamentally affect
the decision-making process about a patient, but it cannot
in any way reduce the burden of the doctor’s responsibility.
Evidence-based medicine is a part of knowledge-based
CDSSs, including the scientific information stored in an
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artificial intelligence system (such as existing physical
scientific references). Now, when a doctor uses data-driven
CDSSs (e.g., the Isabel database) to determine differential
diagnoses, this decision can change all subsequent
orders for patient management. As a result, when using
artificial intelligence, the doctor should know that these
systems are ultimately not responsible, and the doctor
is the one who makes the decision and must accept the
responsibility for that decision (9). Furthermore, when a
diagnostic or treatment error is committed by artificial
intelligence, it is not clear to what extent the physician is
responsible. This situation is one of the cases that should
be explicitly foreseen in the law, and since the role of the
doctor in the decisions offered by artificial intelligence
varies in different clinical conditions, it takes a long
time to set specific legal provisions for each individual
condition. Therefore, from a legal point of view, artificial
intelligence-related issues require novel measures to be
resolved (10).

Another point that can be mentioned about CDSS
systems is the role of the clinical expert in asking relevant
and understandable questions about the clinical case.
The CDSS cannot interpret the patient’s symptoms as the
patient expresses them, while the clinical specialist should
make the patient’s clinical complaints and symptoms
understandable to the system. One of the challenges of
CDSS is the ability of the system to perform this function,
similar to a doctor (2).

In traditional decision-making, the doctor makes
a differential diagnosis in his mind based on clinical
signs and symptoms and then tries to reach a definitive
diagnosis based on complementary investigations
(laboratory or imaging studies) or even after starting
an experimental treatment. This method is limited to the
knowledge and intelligence of the doctor, who should
act far from error in a limited time (11, 12). In addition,
in surgery fields, the doctor may be biased due to the
need for emergency actions for a possible provisional
diagnosis and consider surgical treatment necessary for
the patient (13). Of course, the risk of bias is not limited
to surgeons; many physicians may suffer from recall bias
(i.e., considering a specific diagnosis that has recently
been encountered more frequently or a therapeutic plan
used a lot in the past for a new patient) (14). With the
help of artificial intelligence modeling and based on the
data that is always being updated, a definitive diagnosis
and treatment can be achieved for patients without time,
emotional, knowledge, and skill limitations (15, 16).

Artificial intelligence has limitations; for example,
the optimal interpretation may not be obtained when
comparing patient data due to variations in algorithms
and the design of the database. This issue highlights

the need for artificial intelligence to consider a standard
information model among various available standard
algorithms (in general, the doctor himself routinely
chooses one of them) (17). Among other issues, one
can note the risk of bias resulting from defects in data
collection, leading artificial intelligence to make mistakes
in predicting or detecting a disease (18, 19). In addition,
artificial intelligence still needs a complete set of data to
reach, sometimes, a simple diagnosis, while a doctor could
easily and without the need for data, which sometimes can
be expensive to gather (e.g., a series of tests), to reach the
right diagnosis (20).

3.2. Dedicated Applications

In a study, Knackstedt et al. showed how to obtain
the volume of the left cardiac ventricle and measure
its function with the help of machine learning during
echocardiography (21). One of the main causes of
ventricular hypertrophy is exercise, which is a completely
physiological entity. However, sometimes it becomes
difficult to distinguish "athlete’s heart" from hypertrophic
cardiomyopathy, which is a very dangerous condition.
Narula et al. designed models in which machine
learning could reliably distinguish between two causes
of hypertrophy (i.e., physiological vs. pathological) (22).
Zhang et al. went much further and distinguished other
causes of myocardial hypertrophy, such as amyloids
and pulmonary arterial hypertension, with the help of
artificial intelligence (23).

Artificial intelligence can also be used to diagnose
electrolyte disorders. Among the most important of these
are potassium disorders, which can cause arrhythmia and,
ultimately, cardiac arrest. Hypokalemia and hyperkalemia
create certain patterns in ECG, which sometimes are
difficult to be differentiated by the doctor, increasing the
possibility of diagnostic errors (24). Recently, artificial
intelligence has entered this field, and some of its
models have been able to identify ECG patterns created by
moderate to severe hypokalemia and hyperkalemia (25).
This ability does not end here, and with the help of deep
learning, it is possible to identify ECG patterns resulting
from calcium and even sodium irregularities (26).

Tison et al. (27) proposed an interesting application
of deep neural networks (DNNs) for detecting atrial
fibrillation (AF) using smartwatch data, such as the
heart rate and step count. The DNN was trained using
a heuristic pretraining method that approximated
representations of the R-R interval without manual
labeling of the training data. The model was validated
against 12-lead electrocardiography in a separate cohort
of patients undergoing cardioversion, smartwatch
data from ambulatory, and self-reported persistent AF
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patients. According to the researchers, the combination
of smartwatch photoplethysmography and DNN could
provide a passive method for detecting AF; however, a
slight reduction was noticed in sensitivity and specificity
compared to standard ECG (28).

It is worth noting that the scope of EKG interpretation
by artificial intelligence is not limited only to electrolyte
disturbances. Koulaouzidis et al. designed indicators that
could be used to early detect tachycardia or ventricular
fibrillation (29). Attia et al. showed new dimensions of
EKG interpretation with the help of pattern programming
in order to diagnose ventricular dysfunction (defined
as a cardiac output of less than 35%) only through the
patient’s EKG (30). By combining the findings of EKG and
echocardiography using the cardio-HARTTM technology,
artificial intelligence was able to obtain comprehensive
information on the cardiac rhythm and its structural
and functional changes, revolutionizing the diagnosis,
treatment, and follow-up of heart failure patients (31).
One of the great challenges of artificial intelligence is
related to the interpretation of radiology images (such as
a mammogram) by this technology. In this field, a false
negative report by artificial intelligence will probably lead
to a diagnostic error at a much higher rate than when an
expert personally inspects the image (32).

3.3. Clinical Examples

According to the explanations provided, we will
further examine the challenges of CDSSs by exploring
the case of a real patient using a data-driven CDSS (the
Isabel site). By presenting this example, we aimed to check
whether artificial intelligence and CDSS in the field of
clinical reasoning could deliver a diagnostic accuracy
close to or equal to the human element.

A 55-year-old male patient diagnosed with
hypothyroidism and treated with levothyroxine visited a
doctor with the main complaints of headache and chest
pain starting 6 months ago. Four months before the
appearance of these symptoms, while walking, he felt
pain and cramping in the lower part of his legs with more
intensity on the right side. Also, he had discomfort in
the epigastric area after consuming food, which led to
a slight decrease in appetite and weight loss of 3 kg in
the last 6 months. During the last 6 months, the patient
also developed a speech disorder and partial paralysis
of the face, which was transient and lasted less than 24
hours. During the first visit to the doctor, regarding the
blood pressure of 190/110 in the right upper limb and
160/90 in the left upper limb, he was examined by CT
angiography and treated with Valzomix at a dose of 80/5
on a daily basis. In angiography, evidence of a saccular
aneurysm in the left subclavian artery and thickening

of the subclavian and carotid arteries were seen on
both sides. During the second visit to a cardiologist due
to the swelling of the right hand and pain in the left
hemithorax, further investigations revealed thrombosis
in the internal carotid artery and popliteal artery, as
well as an increase in the thickness of the wall of the
superior mesenteric artery. Arterial thrombosis was also
identified in CT angiography and ultrasound examination.
Carotid artery Doppler was reported. Considering vascular
involvement, the cardiologist examined the patient for
rheumatological diseases, specifically vasculitis, and
the tests revealed an increase in p-ANCA and a decrease
in C4 levels. Also, according to the suspicious history
of thrombosis, the levels of homocysteine, C, and S
proteins and coagulation factors were checked, revealing
an increase in the serum levels of homocysteine and
a decrease in C and S proteins. Finally, with the possible
diagnosis of Takayasu’s arthritis, protein C and S deficiency,
and hyperhomocysteinemia, the patient was treated
with corticosteroids and azathioprine and underwent
long-term treatment with oral anticoagulants.

In this review, Isabel was used as an example of a CDSS
for approaching a clinical case. Relevant data, including
age, gender, vacancy, and the patient’s symptoms,
including abdominal pain after meals, hypertension, hand
swelling, headache, lameness, and shoulder pain, were
entered into the system, and more than 30 differential
diagnoses were proposed. Takayasu’s arthritis was not
mentioned among any of the differential diagnoses. Of
course, Isabel raised Giant cell arteritis as one of the
main differential diagnoses, which ironically was also
one of the main differential diagnoses raised by the
cardiologist. If we assume that the specialist using this
system in the approach to the above patient could become
closer to his differential diagnosis, an important question
that arises is whether the mere approach to differential
diagnoses can be considered a benefit. Could it be an
example of the benefits mentioned at the beginning
of the discussion? Another problem with this clinical
example and the applicability of the Isabel site was that
hypercoagulability, i.e., proteins C and S deficiencies and
hyperhomocysteinemia, was not mentioned among the
differential diagnoses proposed. In fact, the performance
of the Isabel site, an example of CDSS, was poor in
terms of the diagnosis of accompanying underlying
diseases. Regarding the management and treatment of
the above-mentioned patient, another question raised was
what the best treatment could be for the patient. What
dose of the medicine should be administered? What is
the duration of treatment and prognosis of the disease?
It seems that Up-to-date as a knowledge-based CDSS can
help clinicians make more accurate and better decisions
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with lower errors within a shorter time than the human
element in these cases.

4. Conclusions

According to the clinical case presented, data-driven
CDSS seems to lack adequate power and needs more
input information for reaching a diagnosis. Referring to
the notions raised about their benefits and challenges,
artificial intelligence and human intelligence cannot
be superior to each other; both have an irreplaceable
role in clinical decision-making, and ongoing research
efforts have been conducted on their combination as
dual intelligence (2). Dual intelligence systems cover the
weaknesses of artificial intelligence by combining the
capabilities of human and machine intelligence. Unlike
artificial intelligence, human intelligence is dynamic and
can perform more diverse tasks (33). The performance
and scope of artificial intelligence are limited to the
information received from humans as input. The future
of medical sciences and clinical decision-making without
artificial intelligence seems unimaginable, error-prone,
and time-consuming. It is also impossible to eliminate
human intelligence. More research is needed to approach
dual intelligence. Clinical professionals should keep
up with the progress of artificial intelligence and CDSS
and learn how to use these networks. The optimal use
of artificial intelligence requires accurate knowledge
of its components, types, weaknesses, and strengths,
as well as knowledge of more complete and efficient
examples of artificial intelligence applications. Systematic
studies have shown that the effective use of CDSS reduces
the risk of inappropriate actions and the risk of work
overload, and job burnout in the healthcare system and
increases the quality of healthcare. It also cuts healthcare
costs, improves diagnostic accuracy, patient safety, and
adherence to preventive and therapeutic guidelines, and
reduces medication errors (6, 8). In the past, it was thought
that CDSS could replace the doctor, but the new view is
that the goal of CDSS is to help the doctor make better
decisions by processing a large amount of information, a
task that may be beyond the capabilities of either of them
alone (6).
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