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Abstract

Insulin-loaded Trimethyl Chitosan (TMC)/tragacanth microspheres were prepared by microemulsion dispersion and triggered
in situ gelation. Microspheres were characterized by their mean size and distribution by laser diffraction spectroscopy and
Brunauer-Emmet-Teller theory. Insulin encapsulation efficiency and in vitro release were determined by Bradford protein assay,
and bioactivity was assessed in vitro using an enzyme-linked immunoassay diagnostic kit and in vivo using Wistar diabetic rats.
TMC/tragacanth particles suppressed insulin release in acidic media and promoted a sustained release at near-neutral conditions.
Micro-capsulated insulin was bioactive, demonstrated by both in vivo and in vitro bioassays.
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1. Background

Insulin instability has been regarded as a significant
obstacle to developing an insulin oral dosage device to
attain optimal diabetic control. Interest in using natural
materials as a part of drug delivery protocols has increased
in the past two decades (1). This characteristic has been
used to produce sustained-release particulate systems for
a variety of medications, proteins, and even cells (2, 3).
The aim of this study was to prepare and characterize an
insulin-loaded TMC/tragacanth polymeric delivery system.
A drug carrier for insulin should provide a stable and
biocompatible environment to ensure that the main
fraction of the therapeutic protein will be biologically
active following encapsulation (4).

Chitosan is a natural cationic polysaccharide
macromolecule obtained by the alkaline deacetylation
of the natural polysaccharide chitin (5). This compound
is a hydrophilic, biocompatible, and biodegradable
macromolecule, which is the most abundant polymer after
cellulose. The interaction between this cationic compound
and the anionic components of the glycoproteins on the
epithelial cell surface on one side and the changes it
induces in the cytoskeletal F-actin on another side can
open the tight junction of the intestinal epithelium
and increase the permeability of this delivered protein

(6). Biopolymers, such as tragacanth, an anionic
polysaccharide gum, can be alternative polymeric carriers
for physiologically important peptides and proteins.
Therefore, the characterization of tragacanth is essential
for providing a foundation for possible applications.

The peptide/protein delivery mechanism of
tragacanth can be achieved through two types of
mechanisms: polyelectrolyte complexes (PECs) and
entrapment through hydrogel (7, 8). Cell toxicity was
tested using the L-929 cell line. Finally, orally administered
NPs elicited a hypoglycemic response and increased serum
insulin levels in diabetic rats (9).

2. Methods

2.1. Materials
Insulin (Isophane regular suspension USP

recombinant DNA origin one vial of 10 mL, 100 units per
mL) was purchased from Vitane Pharmed pharmaceutical
company. Hydrochloric acid (HCl, 37%), Na2HPO4, KH2PO4,
and H3PO4 were bought from Merck chemical company.
Tragacanth was purchased from Tehran’s local market.
Chitosan powder (MW = 100,000 - 300,000 deacetylation
degree ≥ 90%) was obtained from Acros Organics. An
insulin enzyme-linked immunoassay (ELISA) kit was
purchased from Monobind Inc (USA).
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2.2. Synthesis of Trimethyl Chitosan/Insulin/Tragacanth

In order to prepare the composite of
TMC/insulin/tragacanth, which contained 0.9% of insulin,
the calculated amount of insulin (1 mL) was first added
to 20 mL of TMC solution (1% wt. in acetic acid). Next, the
solution was sonicated at ambient temperature for 30
min, followed by the addition of tragacanth (20 mL) and
another 30 min of ultrasonic irradiation (10).

2.3. Synthesis of Insulin/Tragacanth

To prepare the composite of insulin/tragacanth with
1.65% of insulin, 1 mL of insulin was added to 20 mL of
tragacanth solution (1% wt.), and this solution underwent
30 minutes of ultra-sonication.

2.4. Synthesis of Insulin/Trimethyl Chitosan

To prepare the composite of insulin/TMC, including
1.7% of insulin, 1 mL of insulin was added to 20 mL of TMC
solution (1% wt), followed by 30 min of ultra-sonication.

3. Results

3.1. Morphology and Size of Particles

The physical properties of the microparticles were
characterized by N2 sorption at -196°C using a TriStar
3000 gas sorption apparatus. The specific surface
area was calculated from the isotherms (11) using the
Brunauer-Emmet-Teller theory (BET) and the pore volume
from the total adsorbed amount at a relative pressure of
p/p0 0.97. The average pore diameter was estimated using
the obtained values for the surface area and the total pore
volume assuming the pores are cylindrical.

Dynamic light scattering analysis and zeta potential
were conducted at neutral pH to measure the size
and zeta potential of TMC/insulin/tragacanth and
TMC/tragacanth composites (12). The measured size
for TMC/insulin/tragacanth was 602 nm, while the size was
438 nm for the TMC/tragacanth composite. The size of the
composite was considered to be suitable for oral delivery.
Zeta potential values (Table 1) were calculated to be 34.7 and
6.28 mv for TMC/insulin/tragacanth and TMC/tragacanth,
respectively, proving the remarkable increase in stability
following drug loading. The composite surface charge was
positive, both with and without the drug.

Table 1. Textural Properties of CS/WST and CS/In/WST 0.86%

Sample SBET [m2 g-1] Vp [cm3 g-1] Dp [nm]

CS/In/WST 75.8736 0.062334 3.36

CS/WST 69.8378 0.059483 3.44

3.2. In Vitro Release

An insulin ELISA kit was used to evaluate the
entrapment efficiency (EE%) of loaded insulin, calculated
to be 100%. Moreover, the ELISA results revealed that
insulin, during the ELISA experiment, will be released
from TMC/insulin/tragacanth binding to the insulin
receptor (13). It is evident from the release data that both
TMC and tragacanth tend to make strong interactions
with insulin. Therefore, there is negligible release at both
pH = 1.2 and 7.4. However, the comparison between release
profiles of TMC/insulin/tragacanth, tragacanth/insulin,
and TMC/insulin showed a considerable difference at pH
= 7.4. The percentage of release was high as 90% over
12 h for TMC/insulin/tragacanth at pH = 7.4. Figure 1
can be explained by the deprotonation of both carboxyl
groups available in tragacanth and TMC, and the repulsion
between the polymer chains makes the release of insulin
from TMC/insulin/tragacanth possible. Consequently,
this system is applicable inside the body because when
pH changes from 2 (stomach pH) to 7 (intestine pH), the
insulin release will start (14, 15).
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Figure 1. Insulin release profile from TMC/tragacanth in pH = 1.2 and 7.4

3.3. Real Amount of Insulin in Synthesized Samples

The insulin quantification test was performed using
the Accubind ELISA kit (16) according to the protocol of the
company (Monobind Inc, USA). In this kit, the absorbance
was read at 450 nm, with 650 nm as a reference. The level
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of insulin (µIU/mL) uptake in the synthesized samples was
measured in terms of percentage by concentrate (%w/w)
of insulin loaded (Figure 2). These experiments were
performed in duplicate, and the results were reported as
mean ± standard deviation.

y = 0.0072x + 0.0857
R² = 0.9438
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Figure 2. Insulin levels in each sample were measured using ELISA and were
compared by

3.4. Cell Cytotoxicity and Cellular Uptake

In the toxicity test (17), the samples were made with
different insulin doses (0.2, 0.4, 0.6, and 1 %w/w) and added
to the medium in three volumes of 5, 10, and 20 µL. The
number of cells per well was 10000, and the toxicity effects
of the synthesized samples were compared in 24 and 48
h with those of the drug-free composite. As the diagrams
in Figure 3A-B show, increasing the insulin dose from 0.2
to 1 raised the absorption rate, indicating that an increase
in insulin concentration had no toxic effect on the cells
implanted in the medium and their growth. Take a closer
look at the lowest insulin concentration of 0.2, which
shows that the composite has a very low toxic effect on the
cells, offset by the high insulin dose in other samples.

3.5. In Vivo Hypoglycemic Effect and Pharmacokinetics

In an animal study, 40 Wistar rats were selected, and
after weighting, female mice were injected with diabetic
mice (18). The mice were divided into 8 groups. The
effects of the oral and parenteral administration of the
synthesized sample compared to insulin solutions have
been noted.

As shown in Figure 4, the synthesized sample of
Ins-TMC/tragacanth had a slower release than the other
samples, and its release results are almost in line with the
results obtained from in vitro studies. It is well established
that when the synthesized sample is administered orally,

after about 10 h in the intestine, it can release insulin at
a slower rate than other samples and causes lower blood
glucose over a continuous period, making it less necessary
to use insulin to lower blood glucose. The amount of
insulin was also measured in the blood serum of the
animals, with no corresponding curve. The highest level
of insulin in the bloodstream is almost obtained when the
blood glucose reaches the lowest level (Figure 4A and B).

4. Discussion

The method presented in this research is a cheap and
facile approach to preparing a composite applicable to
oral and subcutaneous insulin delivery. Water-soluble
tragacanth (WST), TMC, and insulin were well mixed
by ultrasonication. It was revealed by the in vitro
release studies that the TMC/insulin/WST composite
0.86% released around 10% of insulin in the colon. The
quantitative ELISA showed that insulin was 100% available
in TMC/insulin/WST composite. In vivo testing, using the
streptozotocin-induced diabetic rat model, demonstrated
that the oral administration of the composite loaded
with insulin at a 30 IU/kg dose contributed to nearly
2 h of lowering blood glucose levels to about 40% of
the basal glucose. However, the same sample injected
subcutaneously decreased blood glucose levels to about
60% of the basal glucose within around 10 h, and the blood
glucose level rose after 18 h and reached above 80%. The
cytotoxicity effect was also tested using the L-929 cell.

4.1. Conclusions

In summary, TMC/tragacanth micro-carrier have been
prepared for overcoming multiple barriers to insulin oral
delivery. TMC/tragacanth has a high percentage of insulin
and is very stable. Insulin sits on TMC, and tragacanth
acts as a hydrogel and protects insulin against stomach
acid. Cytotoxicity studies have shown that TMC/tragacanth
exhibits low toxicity and higher stability. We see no
adverse effects with the increased insulin concentration
loaded on them. According to the in vivo studies,
following the oral administration of TMC/tragacanth with
insulin, mice could experience long-term hypoglycemia.
We also expect this method to have more significant
potential for research and development so that it can even
pass human clinical phases in the future and enter the
industrial formulation and pharmaceuticals field. This
compound promises to be particles based on chitosan
derivatives and hydrogels as drug carriers for the oral
administration of insulin, other peptides, and even other
biomacromolecules.
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Figure 3. MTT assay of L-929 cells with the blank composite (TMC/tragacanth) in different concentrations; A: 24 h; B: 48 h
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Figure 4. Blood glucose levels in diabetic rats after the oral administration of Ins-TMC/tragacanth, insulin solution, and saline (A). Plasma insulin level in diabetic rats after
the oral administration of Ins-TMC/tragacanth, insulin solution, and saline (B).
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