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Abstract

Context: Calcium channel blockers (CCBs) play a crucial role in the treatment of cardiovascular diseases. Mebudipine, a
dihydropyridine derivative CCB, was first synthesized in 1997. This study explores the potential benefits of mebudipine in managing
cardiovascular disease, particularly as a derivative of nifedipine.
Evidence Acquisition: The article succinctly presents the advancements in mebudipine research, which were uncovered through
extensive searches in reputable scientific databases such as ScienceDirect, Google Scholar, Scopus, and PubMed, conducted by 2
blinded researchers. The search focused on studies relevant to mebudipine, using specific keywords.
Results: Mebudipine exhibits cardioprotective effects, reducing the occurrence of arrhythmias and minimizing heart tissue
damage. Additionally, it has been found to enhance the levels of nitric oxide metabolites. Due to its limited solubility in water,
mebudipine is typically administered using a nanoemulsion. Importantly, it has been deemed a safe drug without mutagenic
effects.
Conclusions: Our review study underscores that mebudipine not only has a cardioprotective effect but also offers protection to
other organs against various forms of injury induction. The mechanisms responsible for these protective effects may be linked to
its ability to counteract oxidative stress, prevent apoptosis, and mitigate inflammation. Nevertheless, further research is needed to
fully elucidate its potential.
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1. Context

Calcium channel blockers (CCBs) are commonly
prescribed for adults with cardiovascular conditions (1).
These blockers are typically categorized into 2 groups:
Non-dihydropyridines and dihydropyridines. They find
utility in treating a range of cardiovascular conditions,
including hypertension, angina pectoris, coronary
spasm, supraventricular dysrhythmias, hypertrophic
cardiomyopathy, and pulmonary hypertension (2).

In 1997, Mahmoudian et al. introduced 2 novel
CCBs, mebudipine ([±]-t-butyl, methyl-1, 4-dihydro-2,
6-dimethyl-4-[3-nitrophenyl]-3, 5-pyridine dicarboxylate)
and dibudipine. These compounds, both non-symmetrical
and symmetrical analogs of nifedipine, were synthesized
and subjected to biological activity studies. The results
suggested that these new dihydropyridine derivatives
hold promise as treatments for hypertension and angina

due to their effective relaxation of smooth muscle in
vascular and ileal systems (3).

Mebudipine, in particular, exhibits more potent
inhibitory effects that are time- and voltage-dependent
when compared to nifedipine. It has demonstrated
effectiveness in managing heart failure without significant
negative inotropic effects while still exerting negative
chronotropic effects (4).

Since no studies have explored mebudipine’s
cardioprotective effects in the past 2 decades, this review
delves into the potential cardioprotective properties of
mebudipine. Additionally, it briefly touches upon other
beneficial effects associated with this drug.

2. Evidence Acquisition

This article succinctly presents the breakthroughs
in mebudipine studies, which were discovered through
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extensive searches in renowned scientific databases,
including ScienceDirect, Google Scholar, Scopus, and
PubMed. Two blinded researchers conducted these
searches to identify all eligible studies using the keyword
”mebudipine.” The specific focus was on investigating the
”Mebudipine effect on the cardiovascular system.”

All studies related to this drug within the last 20
years, identified using the mentioned keywords, were
thoroughly examined. A total of 25 original articles from
the literature were found, and each of them underwent
a comprehensive review for inclusion in this study. This
review article discusses all the original research studies
concerning mebudipine’s effects on the cardiovascular
system or any organs that impact cardiovascular function.

3. Results

3.1. Pharmacokinetics of Mebudipine in Rats

Mebudipine, a novel calcium antagonist, underwent
a study in rats. Following intravenous administration,
its plasma concentration exhibited a half-life of 2.84
hours, a blood clearance of 1.67 L/h/kg, and a volume
of distribution of 6.26 L/kg. However, upon oral
administration, mebudipine displayed low bioavailability,
indicating a significant first-pass effect. The drug is rapidly
distributed into various tissues, including the brain, heart,
liver, and kidneys, residing in the same compartment as
plasma (5). Additionally, Bohlooli et al. (6) developed
a high-performance liquid chromatography (HPLC)
method to measure dibudipine levels in biological fluids
in rats. The drug also exhibited low oral bioavailability
and demonstrated a bi-exponential decline following
intravenous injection. The HPLC method proved to be
user-friendly and suitable for further investigations.
Furthermore, a new compound called mebudipine was
identified, and an HPLC method was developed to measure
it in rabbit plasma. This method was found to be accurate,
sensitive, and suitable for studying the pharmacokinetics
of Mebudipine (7).

3.2. Determination of Mebudipine in Human Plasma

A study conducted by Asgari et al. (8) aimed to
measure mebudipine levels in human plasma. In plasma,
mebudipine exhibited a limit of quantification of 5
ng/mL, a mean extraction efficiency of 84%, and linearity
within the range of 5 to 100 ng/mL (r2

> 0.99). This
study demonstrated that liquid chromatography-tandem
mass spectrometry is a reliable method for detecting
mebudipine in human plasma. It offers accuracy,
sensitivity, selectivity, and low coefficients of variation and
error.

3.3. Mechanism of Vasoselective Action of Mebudipine

Mebudipine, a novel CCB, was investigated for its
vasoselective action. It effectively inhibited potassium
chloride (KCl)-induced contractions and demonstrated
a greater impact when aortic rings were depolarized.
Compared to nifedipine, mebudipine exhibited stronger
inhibitory effects and displayed negative chronotropic
and inotropic effects (9). Mebudipine had a negative
impact on heart rate but positively affected inotropy,
distinguishing it from nifedipine. These findings
suggest that mebudipine has the potential for use in
cardiovascular diseases without causing harmful side
effects. It may exert a selective and protective effect on
calcium channels in ischemic areas, making it a promising
treatment option for cardiovascular diseases with a
favorable safety profile. Mebudipine, a dihydropyridine
CCB, demonstrated greater time- and voltage-dependent
inhibitory effects compared to nifedipine (9).

3.4. Evaluation of Mutagenicity of Mebudipine, a New Calcium
Channel Blocker

Gholami et al. (10) conducted an Ames assay with
liver enzymes (S-9 mix) to assess the mutagenic effects
of mebudipine. The test was found to be reliable and
accurate. Mebudipine was evaluated for mutagenicity
using Salmonella TA102, both with and without S-9. Six
doses, ranging from 39 µg to 1250 µg per plate, were
employed. The colony counts remained within the safe
range for all doses, indicating that mebudipine did not
exhibit mutagenic properties.

3.5. Mebudipine as a Nanoemulsion Drug

A nanoemulsion drug delivery system was developed
to enhance the oral bioavailability of mebudipine, a
calcium channel blocker with low water solubility. Khani
et al. (11) conducted a study to evaluate the impact of
nano-formulation on the pharmacokinetic parameters of
mebudipine in rats. According to the study, mebudipine
nanoemulsion exhibited 2.6-, 2.0-, and 1.9-fold higher
relative bioavailability compared to suspension, ethyl
oleate solution, and micellar solution, respectively. Their
research suggested that employing a nanoemulsion as
a delivery method is highly advantageous for molecules
with poor water solubility, such as mebudipine.

To enhance the effectiveness of antihypertensive
therapy, a nanoemulsion was developed to improve the
bioavailability of mebudipine. The particle size in the
formulation was assessed using dynamic light scattering.
Subsequently, artificial neural networks were utilized to
identify the factors influencing the particle size of the
nanoemulsion. Three input variables were examined,
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namely the amount of surfactant system (T80 + S80),
the quantity of polyethylene glycol, and the amount of
ethanol as cosurfactants, while the particle size served
as the output parameter. The model indicated that as
each input value increased, the particle size decreased.
Furthermore, it was determined that the quantity of
surfactant had the most significant impact on regulating
the final particle size of the nanoemulsion (12).

3.6. Improved Oral Bioavailability of Mebudipine upon
Administration in PhytoSolve and Phosal-Based Formulation

An investigation by Khani et al. (13) explored
how PhytoSolve and phosal-based formulation (PBF)
could enhance the oral absorption of mebudipine, a
calcium channel blocker with low water solubility. The
study assessed the absorption of various mebudipine
formulations (PhytoSolve, PBF, oily solution, and
suspension) in rats through oral administration. Both PBF
and PhytoSolve formulations could be mixed with water
in any proportion and did not exhibit separation or drug
precipitation during storage for up to a month. Notably,
when mebudipine was formulated with PhytoSolve and
PBF, it displayed superior bioavailability compared to
suspension and oily solutions. These novel formulations
hold promise as alternative carriers to increase the oral
bioavailability of poorly water-soluble molecules like
mebudipine (13).

3.7. Therapeutic Effects of Mebudipine

3.7.1. Effects on the Heart, Blood Pressure, and Internal
Mammary Artery

Mebudipine and dibudipine demonstrated a mild
reduction in left atrium contractions in rats compared
to nifedipine. Both drugs effectively lowered rat blood
pressure, with mebudipine exhibiting a similar effect
to nifedipine, while dibudipine’s effect was somewhat
weaker but of longer duration (14). Notably, mebudipine
exhibited slower absorption kinetics than nifedipine.
These new compounds, mebudipine, and dibudipine,
displayed relaxing effects similar to nifedipine on
KCl-treated human internal mammary arteries.
Mebudipine was particularly identified as a vasoselective
compound with potent blood pressure-lowering effects
and significant vasorelaxant properties. Both compounds
reproduced their vasorelaxant actions in human vascular
preparations and showed mild cardio-depressant effects
(14).

3.7.2. Effects on Heart Myocardial Arrhythmia Induced by
Ischemia-Reperfusion Injury

Following an ischemic injury, reestablishing
blood flow to the heart can lead to hazardous cardiac

arrhythmias and the death of myocardial cells through
apoptosis and necrosis. Calcium channel blockers (CCBs)
have been recognized for their ability to safeguard the
myocardium from damage and arrhythmias (15). Ghiasi et
al. conducted a study to investigate mebudipine’s impact
on myocardial arrhythmias and tissue injury in isolated
rat hearts subjected to ischemia/reperfusion. The study
closely monitored electrocardiographs, assessed serum
lactate dehydrogenase (LDH) and creatine phosphokinase
(CPK) activities in coronary effluent, and examined the
microscopic architecture of the myocardium. Mebudipine
demonstrated a reduction in ventricular arrhythmias, an
improvement in edema and inflammation, and decreased
tissue damage compared to the control group (15).

3.7.3. Effect on Oxidative Stress and the Nitric Oxide System in
Myocardial Ischemia-Reperfusion Injury

Myocardial infarction, characterized by a loss of
blood supply to the heart, leads to oxidative stress
and myocardial necrosis. In a study by Ghyasi et
al., mebudipine’s impact on lipid peroxidation and
antioxidant enzymes in myocardial ischemia-reperfusion
injury was explored. The results indicated that
mebudipine reduced oxidative damage and lipid
peroxidation while enhancing antioxidant enzyme
activities and myocardial function. Consequently, this
drug has the potential to mitigate the severity of the
cardiac ischemic injury and exhibit cardioprotective
effects. Mebudipine may influence the nitric oxide system
and heart function during ischemia-reperfusion injury
in rats. A deficiency in nitric oxide production can
contribute to myocardial ischemia-reperfusion injury.
Administration of mebudipine resulted in improved
heart function, reduced levels of lactate dehydrogenase
and creatine kinase in coronary effluent, and increased
nitric oxide metabolite levels in the heart compared to the
control group (16).

3.7.4. Effect on Vascular Flow of Isolated Kidney in Normal and
Diabetic Rats

Calcium channel blockers are commonly prescribed
for hypertension and can also improve renal function in
individuals with essential hypertensive renal disease or
diabetic renal disease. Recent studies have highlighted
the beneficial effects of dihydropyridine-type CCBs, such
as mebudipine and dibudipine, in enhancing renal
blood flow in normal rat kidneys. Sepehr-Ara L. et al.
examined the impact of these new drugs on blood flow
in diabetic rat kidneys, comparing them to nifedipine,
and assessed whether their effects varied in isolated
perfused kidneys. The study concluded that mebudipine
and dibudipine were more effective than nifedipine
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in inhibiting phenylephrine (PE)-induced perfusion
pressure in diabetic rats, even at lower concentrations.
Furthermore, it has been shown that CCBs, specifically
dihydropyridine derivatives, are commonly used to treat
hypertension. They can also help improve renal function
in patients with essential hypertensive renal disease or
diabetic renal disease. These compounds were found to
exert similar vasodilatory effects in both vascular and ileal
smooth muscle tissue (17).

3.7.5. Effects on Cerebral Oxygen-Glucose
Deprivation/Reperfusion Injury

Tavakoli-Far et al. conducted a study to investigate the
potential neuroprotective effects of new calcium channel
blockers, mebudipine, and dibudipine on primary
murine cortical neurons subjected to oxygen-glucose
deprivation/reperfusion injury. Their findings suggested
that the neuroprotective effects were dose-dependent
and possibly associated with a reduction in nitric oxide
production. These findings indicate a potential role for
mebudipine and dibudipine in protecting neurons from
ischemic injury (18).

3.7.6. Effects on PC12 Cells Against Oxygen-Glucose Deprivation
and Glutamate

Mebudipine and dibudipine, two new L-type CCBs,
demonstrated significant neuroprotective effects against
glutamate and oxygen-glucose deprivation-induced
neurotoxicity in PC12 cells. Importantly, they
outperformed nimodipine in terms of neuroprotection
(19).

3.7.7. Effects on Voltage-Activated Calcium Currents in PC12
Cells

Rouzrokh et al. investigated 2 novel CCBs, mebudipine,
and dibudipine, and assessed their relaxing effects on
vascular and atrial smooth muscle. Their potency was
compared to amlodipine using differentiated PC12
cells. The study found that mebudipine exhibited
similar potency to amlodipine, whereas dibudipine
was somewhat less potent. Notably, undifferentiated PC12
cells did not display voltage-activated Ca2+ currents (20).

3.7.8. Effects on Guinea-Pig Isolated Common Bile Duct

Beigly et al. examined the effects of CCBs
on contractions in the guinea pig bile duct. All
the compounds tested reduced the amplitude
of the contractile response and shifted the
concentration-response curve of calcium chloride to
the right. Additionally, these compounds exhibited
antagonistic effects on the contractile response of the

K+-depolarized bile duct, although their inhibitory effects
were not significantly different (21).

3.7.9. Effect on Ca2+ Spikes in F1 Neuronal Soma Membrane in
Helix Aspersa

New calcium channel blockers, mebudipine, and
dibudipine, were synthesized and evaluated for their
inhibitory actions on high-threshold Ca2+ spikes in helix
aspersa. Both compounds demonstrated reversible effects,
with mebudipine being identified as the most potent
among them. Notably, neither the new dihydropyridines
nor nifedipine altered the resting membrane potential
(22). Table 1 shows the pharmacokinetics of mebudipine.

As shown in Table 2, mebudipine effects on the
cardiovascular system and some organs of the body have
been reported.

4. Discussion

1,4-DHP nifedipine is commonly prescribed for
hypertension and angina but possesses certain drawbacks,
including its rapid onset of vasodilating action and
a short half-life. To address these limitations, newer
analogs such as mebudipine and dibudipine have been
developed, featuring t-butyl substituents aimed at altering
metabolism without compromising activity. Bohlooli et
al. (5) conducted a study to investigate the metabolism
of these novel 1,4-DHP compounds in rat hepatocytes.
Interestingly, mebudipine and dibudipine were found to
undergo metabolism in a manner similar to nifedipine,
involving hydroxylation followed by O-glucuronidation.
Importantly, these compounds exhibited longer in-vitro
half-lives compared to nifedipine, rendering them
promising candidates for further development.

Furthermore, researchers explored the potential
of nanoemulsions to enhance the effectiveness
of antihypertensive treatment by improving the
bioavailability of mebudipine. Khani et al. in 2019
employed dynamic light scattering to measure particle
size and utilized artificial neural networks to identify
variables influencing particle size (12). In a similar
study, Shanaghi et al. (26) investigated the impact
of surfactant/lipid concentration on particle size.
Additionally, Ilić et al. in 202327 demonstrated that
lipid nanocarriers could facilitate drug delivery to
the brain by overcoming blood-brain barriers in the
central nervous system (CNS). In line with these findings,
Khani et al. in 2016 evaluated the oral nanoemulsion
drug delivery of mebudipine, resulting in improved
oral bioavailability (11). Nanoemulsions have gained
recognition as an advantageous drug delivery option,
offering easy preparation, enhanced drug absorption,
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Table 1. Pharmacokinetics of Mebudipine

References

Pharmacokinetics ofmebudipine

Quickly enters tissues like the brain, heart, liver, and kidney but has low bioavailability
due to the first-pass effect.

(5)

Liquid chromatography-tandem mass spectrometry is a reliable method for detecting it. (8)

PhytoSolve and Phosal-based formulation can improve its absorption. (13)

Surfactants play the most significant role in regulating the ultimate particle size of
mebudipine nanoemulsion.

(12)

The nanoemulsion delivery method is advantageous for mebudipine. (11)

HPLC was a reliable method to measure mebudipine in rabbit plasma (7)

Abbreviations: PBF, phosal-based formulation; HPLC: high-performance liquid chromatography.

Table 2. Mebudipine Effects on the Cardiovascular System and Some Organs of the Body

Variables Effects References

Effects ofmebudipine on heart and vascular
flow

Decreases endothelin-1, AST, ALT, CK-MB, and LDH in heart failure model. (4)

Decreases heart rate but increases on inotropy. (9)

Reduces ventricular arrhythmias, decreases edema and inflammation, and decreases
heart tissue injury.

(15)

Has relaxing effects on vascular and atrial smooth muscle (20)

Decreases oxidative damage and lipid peroxidation (23)

Decreases the LDH and CK in the coronary effluent. Increases the NO metabolite levels. (16)

Inhibits the phenylephrine elicited perfusion pressure in renal vascular. (17)

Increases the renal blood Flow. (24)

Others

Reduces the common bile duct muscular contraction. (21)

Decreases oxygen-glucose deprivation-induced neurotoxicity in PC12 cells. (19)

It not found to be mutagenic. (10)

It is in line with optimized selective mineralocorticoid receptor analogs. (25)

Inhibits high threshold Ca2+ spikes in Helix aspersa. (22)

It protects primary murine cortical neurons from oxygen-glucose
deprivation/reperfusion injury.

(18)

Abbreviations: AST, aspartate aminotransferase; ALT, alanine transaminase; CK-MB, creatine kinase MB; LDH, lactate dehydrogenase; MR, mineralocorticoid receptor; NO,
nitric oxide.

and improved bioavailability. They can encapsulate
both hydrophilic and hydrophobic drugs and represent
a valuable addition to current therapeutic strategies
(27). Additionally, Ajdary et al. (28) discovered that
employing a PBF in a sustained-release formulation of
clomiphene citrate could enhance targeting efficiency,
thereby improving its impact on implantation and gene
expression.

Moreover, Aali et al. (4) investigated the effects of
mebudipine and amlodipine on heart rate in animals
with heart failure (HF). Their findings revealed that
mebudipine was capable of reversing plasma biomarker
values in treated animals, restoring them closer to
baseline levels when compared to the HF control group.

These results suggest a potential protective effect of
mebudipine on the heart organ. This notion is supported
by the study conducted by Ghiasi et al. (15), which
demonstrated that mebudipine could reduce ventricular
arrhythmias. Additionally, CCBs have long been used as
routine medications for the treatment of arrhythmias
(29). Furthermore, Ghyasi et al. (16) reported that the
administration of mebudipine led to improved heart
function and increased nitric oxide metabolite levels
in the heart. These findings collectively suggest that
mebudipine may help mitigate oxidative damage, similar
to verapamil (a non-dihydropyridine CCB) (30).
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4.1. Conclusions
Based on the mentioned study, it appears that

mebudipine exhibits a protective effect on the
cardiovascular system and various other human organs.
The mechanisms contributing to its cardioprotective
effects may involve the reduction of endothelin-1, AST, ALT,
CK-MB, and LDH levels. Additionally, mebudipine has a
positive impact on heart inotropy, resulting in reduced
occurrences of ventricular arrhythmias, edema, oxidative
damage, inflammation, and decreased heart tissue injury.
Furthermore, mebudipine demonstrates vasorelaxant
properties, affecting blood vessels and smooth muscles in
the atria.
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