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Abstract

Background: The age of boots is a significant factor that can impact the risk of injury during daily activities. Conversely, military
personnel rely on their footwear to meet the physical demands of their daily professional tasks.
Objectives: This study aimed to evaluate how wearing thermoplastic polyurethane (TPU) and rubber military boots for six months
affects lower limb muscle activity during running.
Methods: Thirty healthy male participants were provided with two new pairs of rubber and TPU military boots and instructed to
wear them for six months. Electromyography signals were recorded during a pre-test and after six months while the participants
ran at a speed of 3.2 m/s. Statistical analysis was conducted using a two-way ANOVA with repeated measures, with a significance level
of 0.05.
Results: The results did not show a significant overall effect of ”boots” or ”time” on muscle activities during running. However, there
were significant boot-by-time interactions for muscle activities during different phases of the running cycle. These interactions were
observed for the tibialis anterior (P = 0.037, η2p = 0.146), gastrocnemius medialis (P = 0.023, η2p = 0.172), and gluteus medius (P =
0.038, η2p = 0.144) activities during the loading phase, tibialis anterior activity at the mid-stance phase (P = 0.003, η2p = 0.278), and
gastrocnemius medialis activity during the push-off phase (P = 0.046, η2p = 0.135).
Conclusions: Wearing military boots appears to affect muscle activities, particularly the tibialis anterior, in healthy males. These
findings underscore the importance of careful boot selection for running activities. Understanding the reasons behind differences
in muscle activity between TPU and rubber military boots can inform further research and the development of specialized footwear
tailored to specific operational needs.
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1. Background

Running is a widely popular physical activity in the
United States, with approximately 30 million individuals
using it for exercise, including around 10 million who
engage in regular running (1) A comprehensive study on
lower limb injuries related to running, which analyzed
approximately 2000 cases, revealed that the highest
percentage of injuries (42.1%) occurred in the knee,
followed by the ankle (16.9%) (2). Stress fractures are
a prevalent concern among athletic individuals, with
reported rates ranging from 1.5% to 31% (3). Remarkably,
among runners, stress fractures can account for up to 50%
of all reported injuries (2). These fractures result from

repetitive loading on the bones, impeding their effective
remodeling during training (4).

Numerous risk factors contribute to the increased
incidence of stress fractures, including gender, low bone
density, exercise surfaces and techniques, and footwear (5).
It has been noted that specific types of footwear, such as
certain sports shoes or poorly constructed footwear like
boots, can amplify the excessive load on biological tissues
(6). An important factor contributing to the elevated
injury rates in runners and military personnel is the
excessive external load they endure (7).

The characteristics of footwear appear to influence
changes in muscle activity (8, 9). Muscles can adapt
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their firing patterns in response to footwear and external
loads, with the goal of absorbing shock and protecting
the body’s structures (10, 11). For example, a muscle may
initiate or delay its activation as a preemptive measure,
or it may prolong its activity. However, when these
adaptations exceed reasonable limits, they can subject the
involved structures to excessive stress, making them more
susceptible to injury (12).

Military boots are typically constructed with
soles made of rubber or materials like polyurethane
(PU) and thermoplastic polyurethane (TPU) (13).
Advanced materials such as Vibram, known for their
high-performance rubber properties, are frequently
used in the soles of premium brands. Additionally,
Poron XRD, a type of PU, is commonly employed as a
metatarsal protection foam due to its ability to provide
firmness during high-velocity impacts (14). However,
there is currently no documented research on how Iranian
military boots specifically affect the electromyography
activity of lower limb muscles during running. Therefore,
the primary focus of this study was to investigate how TPU
and rubber military boots impact the activity of lower
limb muscles during running.

2. Objectives

The aim of this study was to evaluate the effects of
wearing military boots made of TPU and Rubber over a
period of six months on the muscle activities in the lower
limbs during running.

3. Methods

3.1. Participants

The research methodology employed was
quasi-experimental and conducted in a laboratory setting.
Sample size estimation was performed using G*Power,
considering an alpha level of 0.05, a statistical power of
95%, and an effect size of 0.70 based on a previous study
related to muscle activities (15). The analysis indicated
that a minimum of 15 participants in each group would
be required to detect significant interaction effects.
Therefore, a total of 30 individuals aged 20 - 25 years were
selected using convenience sampling. The participants
were divided into two groups: One with 15 individuals
wearing rubber boots and the other with 15 individuals
wearing TPU boots (Table 1).

All participants in the study were healthy individuals
who had engaged in regular physical activities, including
walking and/or running training, for at least one year.
They participated in three sessions per week, each

lasting 50 minutes. Additionally, all participants were
right-dominant, and they had previous experience with
the specific shoe model used in this experiment. The
predetermined exclusion criteria included a medical
history of trunk and/or lower limb surgery, as well as the
presence of neuromuscular or orthopedic disorders.

The research protocol received approval from the
Ethics Committee at Ardabil’s Mohaghegh Ardabili
University in Iran under the code IR.UMA.REC.1401.026,
and it was registered in the Iranian Registry of Clinical
Trials with the code IRCT20220714055469N1. Written
informed consent was obtained from all participants.

3.2. Experimental Procedures

The participants were provided with new boots
manufactured by Arsan Sanat Aghanezhad, a private
company in Iran-Tabriz specializing in the production
of rubber and TPU boots, for the initial tests (pre-tests).
During the pre-test phase, running assessments were
conducted on a straight 15-meter track at a running
speed of 3.2 m/s (16). Participants were instructed to
use these boots consistently throughout the entire
six-month intervention period while performing the task.
After the six-month period, the participants returned
to the laboratory for a post-test evaluation. During the
post-test, the same boots that had been used during
the intervention were worn by the participants (17).
Three successful running tests were conducted for each
condition and were subsequently used for statistical
analysis. Maximum isometric voluntary contraction
(MVIC) tests were employed to standardize and normalize
the electromyography (EMG) amplitude.

We utilized a wireless EMG system (Biometrics Ltd.,
Newport, UK) equipped with 8 Ag/AgCl electrodes. These
electrodes were positioned with a center-to-center
distance of 20 mm and had a CMRR exceeding 110 dB
(18). With this system, we recorded the activity of various
muscles in the dominant leg, including the tibialis
anterior (TA), gastrocnemius medialis (Gas-Med), biceps
femoris (BF), semitendinosus (ST), vastus lateralis (VL),
vastus medialis (VM), rectus femoris (RF), and gluteus
medius (Glut-Med) (19). These muscles were selected for
their stabilizing role during running (20). The raw EMG
signals were sampled at a rate of 1000 Hz and wirelessly
transmitted via Bluetooth to a computer for subsequent
analysis. In accordance with SENIAM guidelines, we shaved
the skin over the specified muscle areas and then cleaned
it with alcohol (21). GRF and EMG data were synchronized,
and MVIC data were used to normalize EMG amplitude
during running. To improve the quality of the EMG signals
and reduce interference from external sources, we applied
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Table 1. Group-Specific Anthropometric Characteristics of Our Participants a

Anthropometric Characteristics
Groups

P-Value
Rubber Thermoplastic Polyurethane

Age, y 21.60 ± 1.49 22.3 ± 1.7 0.128

Height 179.49 ± 4.14 162.3 ± 6.5 0.346

Bodymass, kg 69.16 ± 12.46 62.4 ± 9.3 0.166

a Values are expressed as mean ± SD.

a bandwidth filter ranging from 10 to 500 Hz and a notch
filter set at 50 Hz (22).

3.3. Statistical Analyses

After assessing the normal distribution using the
Shapiro-Wilk-Test, we conducted a separate analysis.
Specifically, we performed a 2 (groups: New vs. used
boots) × 2 (time: Pre- and post-intervention) ANOVA with
repeated measures. Subsequent post-hoc examinations
were carried out using a paired sample t-test with
adjustments made using the Bonferroni method. If we
identified any significant differences between the groups
at the baseline, we included the relevant parameter as
a covariate in our statistical analyses. Effect sizes were
calculated using partial eta-squared (η2p). We set the
significance level at P < .05 for all statistical analyses.
These analyses were conducted using SPSS 26.0.

4. Results

The results did not reveal a significant main effect of
”boots” or ”time” for muscle activities during the loading
phase. Furthermore, the findings showed a significant
main effect of boot-by-time interactions for TA (P = 0.037,
η2p = 0.146), Gas-Med (P = 0.023, η2p = 0.172), and
Glut-Med (P = 0.038, η2p = 0.144) during the loading phase.
Pairwise comparisons indicated that Gas-Med activity was
significantly greater in the rubber military boots group
compared to the TPU military boots group during running.
Additionally, pairwise comparisons revealed that Glut-Med
and TA activity was significantly greater in the TPU military
boots group compared to the rubber military boots group
during running (Table 2).

The results showed no significant effects of ”boots” and
”time” on muscle activities during the mid-stance phase.
However, there was a significant effect of boot-by-time
interactions for TA (P = 0.003, η2p = 0.278) during the
mid-stance phase. Pairwise comparisons indicated that
TA activity was significantly greater in the rubber military
boots group compared to the TPU military boots group
during running (Table 3).

The findings also revealed no significant effects
of ”boots” and ”time” on muscle activities during the
push-off phase. However, there was a significant effect of
boot-by-time interactions for Gas-Med (P = 0.046, η2p =
0.135) during the push-off phase. Pairwise comparisons
showed that Gas-Med activity was significantly greater
in the rubber military boots group compared to the TPU
military boots group during running (Table 4).

5. Discussion

This study represents the first attempt to assess the
impact of wearing TPU and Rubber military boots on lower
limb muscle activities during running over a 6-month
period. Additionally, it is the first study to evaluate and
compare the muscle activities of military personnel while
wearing TPU and Rubber military boots.

Our findings indicate that there was significantly
greater muscle activity in the TA and Glut-med during the
loading response phase in the group wearing TPU military
boots compared to the group wearing rubber military
boots. This difference in muscle activity between TPU and
rubber military boots may be attributed to the mechanical
characteristics and support provided by each type of boot.

TPU boots are well-known for their durability and
stability, and they may provide more substantial support
and resistance during the loading response phase, leading
to increased muscle engagement. On the contrary,
rubber boots, known for their flexibility, may allow
for greater freedom of movement and reduced muscle
activation during the same phase (23, 24). Additionally,
variations in running styles, foot anatomy, and individual
musculoskeletal conditions could contribute to distinct
muscle activity patterns when wearing different types of
footwear (25).

A similar study conducted by Motawi yielded
comparable results, showing that participants wearing
TPU military boots exhibited higher activity in the
TA muscle during the propulsion phase compared to
those wearing traditional leather military boots. This
consistency in findings suggests that TPU boots may

Ann Mil Health Sci Res. 2024; 22(1):e142692. 3



Piran Hamlabadi M and Jafarnezhadgero AA

Table 2. Muscle Activity in Two Conditions During Loading Phase a

Muscles

Boot Type Sig. (Effect Size)

Rubber TPU
Main Effect of Boot

Main Effect of
Time

Interaction: Boot
× Time

New Used New Used

TA (%MVIC) 99.58 ± 22.01 108.09 ± 19.57 110.07 ± 30.70 99.52 ± 12.72 0.993 (0.001) 0.760 (0.003) 0.037 b (0.146)

Gas-Med (%MVIC) 118.79 ± 60.86 106.62 ± 40.49 98.77 ± 36.97 149.05 ± 71.65 0.395 (0.026) 0.216 (0.054) 0.023 b (0.172)

VL (%MVIC) 66.94 ± 30.42 58.92 ± 16.67 59.15 ± 31.25 54.99 ± 16.84 0.320 (0.035) 0.390 (0.027) 0.741 (0.004)

VM (%MVIC) 56.91 ± 22.21 62.82 ± 39.69 68.20 ± 37.77 95.54 ± 102.47 0.170 (0.066) 0.274 (0.043) 0.499 (0.016)

RF (%MVIC) 34.05 ± 13.82 31.99 ± 8.90 31.30 ± 7.69 27.50 ± 5.69 0.199 (0.058) 0.180 (0.063) 0.754 (0.004)

BF (%MVIC) 56.17 ± 13.98 74.96 ± 35.56 61.87 ± 13.87 72.45 ± 40.64 0.820 (0.002) 0.072 (0.111) 0.559 (0.012)

ST (%MVIC) 65.50 ± 18.99 70.22 ± 16.33 63.64 ± 15.01 77.99 ± 22.47 0.537 (0.014) 0.057 (0.124) 0.316 (0.036)

Glut-Med (%MVIC) 104.89 ± 77.59 91.53 ± 37.50 92.82 ± 45.70 146.88 ± 77.91 0.174 (0.056) 0.223 (0.050) 0.038 b (0.144)

Abbreviations: MVIC, maximum isometric voluntary contraction; TA, tibialis anterior; Glut-med, gluteus medius; Gas-Med, gastrocnemius medialis; BF, biceps femoris;
ST, semitendinosus; VL, vastus lateralis; VM, vastus medialis; RF, rectus femoris; Glut-Med, gluteus medius.
a Values are expressed as mean ± SD unless otherwise indicated.
b P ≤ 0.05 was considered statistically significant.

Table 3. Muscle Activity in Two Conditions During Mid-Stance Phase a

Muscles

Boot Type Sig. (Effect Size)

Rubber TPU
Main Effect of Boot

Main Effect of
Time

Interaction: Boot
× Time

New Used New Used

TA (%MVIC) 102.29 ± 17.33 115.08 ± 23.37 113.98 ± 21.64 98.18 ± 9.89 0.554 (0.013) 0.779 (0.003 0.003 b (0.278)

Gas-Med (%MVIC) 105.63 ± 53.33 120.43 ± 47.25 101.34 ± 47.00 99.79 ± 47.72 0.340 (0.033) 0.598 (0.010) 0.530 (0.014)

VL (%MVIC) 65.36 ± 35.03 55.91 ± 20.88 57.15 ± 17.25 64.06 ± 21.46 0.995 (0.001) 0.866 (0.001) 0.116 (0.086)

VM (%MVIC) 48.13 ± 13.38 67.73 ± 20.68 69.30 ± 24.66 111.55 ± 147.74 0.110 (0.089) 0.124 (0.082) 0.569 (0.012)

RF (%MVIC) 34.86 ± 13.21 31.26 ± 8.83 31.85 ± 14.59 26.79 ± 7.21 0.238 (0.049) 0.128 (0.081) 0.815 (0.002)

BF (%MVIC) 62.72 ± 22.05 63.50 ± 26.18 60.81 ± 21.13 77.28 ± 44.60 0.324 (0.035) 0.359 (0.030) 0.195 (0.059)

ST (%MVIC) 134.84 ± 267.48 61.62 ± 14.55 62.69 ± 10.27 68.09 ± 36.04 0.362 (0.030) 0.333 (0.034) 0.276 (0.042)

Glut-Med (%MVIC) 104.38 ± 79.08 115.09 ± 75.08 99.02 ± 61.53 144.75 ± 71.58 0.466 (0.019) 0.181 (0.063) 0.296 (0.039)

Abbreviations: MVIC, maximum isometric voluntary contraction; TA, tibialis anterior; Glut-med, gluteus medius; Gas-Med, gastrocnemius medialis; BF, biceps femoris;
ST, semitendinosus; VL, vastus lateralis; VM, vastus medialis; RF, rectus femoris; Glut-Med, gluteus medius.
a Values are expressed as mean ± SD or unless otherwise indicated.
b P ≤ 0.05 was considered statistically significant.

consistently promote greater engagement of the TA
muscle during military tasks involving propulsion,
indicating a potential trend across various footwear
comparisons (26).

Conversely, Hill et al. reported that there were no
significant differences in lower extremity muscle activity
between different types of military footwear (27). The
variations in outcomes between these studies may
be attributed to several factors, including the diverse
materials used in the boots, variations in participant
characteristics, and the specific military tasks under
analysis.

Furthermore, differences in research methodologies,
such as measurement techniques and data analysis, could

also contribute to disparities in the observed patterns
of muscle activation. Additionally, previous research
has demonstrated the significance of ankle plantarflexion
during the loading phase of running (28). This movement
allows the TA muscle to gradually lower the foot to
the ground. In cases where the TA muscle does not
generate sufficient force, excessive flexion speed occurs
at the top of the foot. Ankle plantarflexion is associated
with foot pronation and internal rotation of the tibia
(28). When the foot makes contact with the ground in
a fully extended position, the knee undergoes flexion,
coordinated by the eccentric action of the quadriceps
muscles. Simultaneously, the hip starts extending through
the concentric action of the hip extensors, including the
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Table 4. Muscle Activity in Two Conditions During Push-Off Phase a

Muscles

Boot Type Sig. (Effect Size)

Rubber TPU
Main Effect of Boot

Main Effect of
Time

Interaction: Boot
× Time

New Used New Used

TA (%MVIC) 103.94 ± 26.97 108.86 ± 26.45 111.96 ± 30.61 98.29 ± 18.08 0.801 (0.002) 0.590 (0.010) 0.074 (0.110)

Gas-Med (%MVIC) 126.29 ± 68.83 119.17 ± 61.22 87.58 ± 26.12 145.35 ± 64.84 0.689 (0.006) 0.088(0.101) 0.046 b (0.135)

VL (%MVIC) 61.21 ± 18.81 55.09 ± 15.49 65.47 ± 32.47 65.07 ± 19.95 0.119 (0.084) 0.644 (0.008) 0.523 (0.015)

VM (%MVIC) 63.38 ± 35.33 56.08 ± 23.75 65.19 ± 28.74 96.11 ± 100.63 0.155 (0.071) 0.433 (0.022) 0.193 (0.060)

RF (%MVIC) 28.77 ± 5.97 29.00 ± 5.57 32.23 ± 13.09 29.04 ± 8.18 0.411 (0.024) 0.545 (0.013) 0.421 (0.023)

BF (%MVIC) 68.38 ± 16.98 61.07 ± 26.60 62.25 ± 22.63 85.73 ± 34.95 0.235 (0.050) 0.168 (0.067) 0.053 (0.127)

ST (%MVIC) 108.43 ± 159.45 67.78 ± 22.19 66.91 ± 17.40 64.12 ± 15.18 0.300 (0.038) 0.301 (0.038) 0.383 (0.027)

Glut-Med (%MVIC) 89.45 ± 43.14 126.05 ± 122.31 87.53 ± 35.73 121.77 ± 64.26 0.881 (0.001) 0.058 (0.123) 0.955 (0.001)

Abbreviations: MVIC, maximum isometric voluntary contraction; TA, tibialis anterior; Glut-med, gluteus medius; Gas-Med, gastrocnemius medialis; BF, biceps femoris;
ST, semitendinosus; VL, vastus lateralis; VM, vastus medialis; RF, rectus femoris; Glut-Med; gluteus medius.
a Values are expressed as mean ± SD or unless otherwise indicated.
b P ≤ 0.05 was considered statistically significant.

gluteus maximus and hamstrings (28, 29).

The human body employs both passive and active
strategies to mitigate shock waves. Passive mechanisms
encompass factors like pad deformation and soft tissue
vibrations to diminish the magnitude of shock waves.
Active mechanisms involve actions such as knee flexion
and calcaneus eversion to minimize the spread of shock
waves (30). Our findings reveal higher TA muscle activity
during the mid-stance phase in the group wearing new TPU
military boots compared to the group wearing used TPU
military boots. Substantial muscle activity around the hip
joint in the frontal plane is observed during the middle
stance and terminal stance phases (28). When the opposite
foot is raised off the ground, the pelvis is supported solely
by the hip of the stance phase, sustained through the
contraction of the hip abductor muscles, particularly the
Glut-med and tensor fascia lata (31).

Nevertheless, our study did not reveal any
significant difference in Glut-med muscle activity. The
Glut-med possesses both the structural and functional
characteristics necessary to generate substantial
abduction forces, crucial for maintaining femoropelvic
stability in the frontal plane (32).

It can be hypothesized that any impairment in the
functioning of the Glut-med might lead to reduced
pelvic stability in the coronal plane or an increase in
hip adduction movement during running, potentially
elevating the risk of injury. Additionally, the duration of
heavy use and the total mileage covered by the shoe have
biomechanical implications, particularly related to its
cushioning properties, which could further contribute to
the risk of injury (33).

Previous research has established a correlation
between shoe age and the incidence of running-related
injuries. As shoes age, they tend to become stiffer,
potentially impacting biomechanical factors such
as loading rates or the peak of tibial acceleration.
Interestingly, these factors have been linked to the
occurrence of stress fractures (34).

Furthermore, our study found significantly higher
Glut-med activity in the group wearing rubber military
boots compared to the group wearing TPU military boots
during running. Studies have indicated the importance
of specific muscles in facilitating different aspects of
running, such as the rectus femoris muscle for hip flexion
and the gluteus maximus and semitendinosus muscles for
hip extension during various phases of the running cycle
(35).

Therefore, it appears that military rubber boots
may enhance running speed, while TPU boots could be
associated with improved overall health parameters.

This study has several limitations that are worth
addressing. Firstly, the study only included healthy male
participants. As a result, the applicability of the findings
to females may be constrained, given that gender-specific
differences in anatomical structures and neuromuscular
activation patterns can influence biomechanical data.

Secondly, it is possible that any observed effects related
to the impact of shoe aging could be influenced by
concurrent effects of physical training that might have
occurred during the intervention period. However, it
is important to note that participants had similar levels
of physical activity before the study began, and they
did not alter their physical activity routines during the
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six-month intervention period. Consequently, it is unlikely
that training effects played a significant role, as physical
activity levels remained consistent both before and during
the study.

Lastly, a notable limitation of this study was the
absence of kinematic analyses, which could have provided
valuable insights but were not included in the research.
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28. Çağlar C. [Rat osteoartrit modelinde farklı intraartiküler enjeksiyon
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