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Abstract

Background: Spaceflight poses unique physiological stressors, including circadian rhythm disruption, which can impact
astronaut health and brain function.
Objectives: This study investigated the effects of rapid day/night changes on cholinesterase activity in the rats’ cerebellum and
prefrontal cortex.
Methods: Rats were divided into 2 groups (n = 8 per group): control and circadian disruption with a 45-minute light/45-minute
dark cycle. After 14 days of intervention, the cerebellum and prefrontal cortex were harvested from each rat. The samples were
washed in ice-cold normal saline solution, weighed, homogenized in phosphate buffer using 1ml of buffer per 100mgof tissue, and
centrifuged. Moreover, the supernatants were used for themeasurement of cholinesterase activity by the photometricmethod.
Results:Mean cholinesterase activity was significantly lower in rats exposed to circadian disruption than in the control group (P<

0.05).
Conclusions: It seems that cholinesterase activity in rats’ cerebellum and prefrontal cortex reduces following exposure to rapid
light/dark rhythm.
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1. Background

Space exploration hasmade significant advancements
in recent years, leading to an increased interest in
understanding the effects of space traveling on the
human body. For the spaceship not to go out of its orbit,
its angular acceleration must be equal to the Earth’s
gravity; therefore, the spacecraft circles the Earth several
times every day, which leads to multiple sunrises and
sunsets in short time intervals (1). Since living organisms
on the surface of the Earth have adapted to a daily rhythm
with a sequence of 24 hours of light and darkness (2),
astronauts experience rapid light and darkness rhythms,
which can disrupt the circadian rhythm in spacecraft.
This issue can profoundly affect astronauts’ physical and
mental health (3).

Disruption of the circadian rhythm, caused by the
frequent and rapid alternation of light and darkness
during spaceflight, has been linked to increased levels

of pro-inflammatory cytokines, such as interleukin-6
and tumor necrosis factor-alpha (TNF-α) (4). Moreover,
circadian disruption can induce oxidative stress (5), which
might adversely affect brain cells and alter biomarkers,
such as cholinesterase (AChE) (6) which hydrolyzes
acetylcholine (ACh).

Acetylcholineplays an important role in theprefrontal
cortex and cerebellum (7-9). Cholinesterase activity
follows a circadian cycle and, similar to other elements
of the cholinergic system, increases during the day and
decreases at night (10, 11).

2. Objectives

By elucidating how circadian disruption affects
cholinesterase activity in these important brain regions,
the present study seeks to contribute valuable insights
into the broader understanding of the physiological and
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molecular mechanisms underlying the consequences of
space travel on the brain. Such knowledge is essential
for developing effective countermeasures to mitigate the
potential adverse effects and ensure the well-being of
astronauts during extendedmissions in space.

3. Methods

3.1. Subject

Male Wistar rats were used for this study. The rats
were housed under standard laboratory conditions, with
controlled temperature (22 ± 2°C) and humidity (55 ± 5%).
Theywere provided food andwater ad libitum throughout
the experiment.

3.2. Experimental Design

The rats were divided into two groups, with eight
rats in each group. Group 1 rats were kept on a 12-hour
light/12-hour dark cycle (control group) for 14 days. Group
2 rats were exposed to a 45-minute light/45-minute dark
cycle for 14 days.

3.3. Tissue Collection and Processing

After 14 days of the respective interventions, the rats
were fasted overnight and then anesthetized via the
intraperitoneal injection of ketamine and xylazine (100
mg/kg and 2.5 mg/kg, respectively). The cerebellum and
prefrontal cortex were harvested from each rat. The
samples were washed in ice-cold normal saline solution
and weighed. They were then homogenized in 20 mM
phosphate buffer (pH = 7.4) at a tissue/buffer ratio of 1:10
(w/v) using 1 ml of buffer per 100 mg of tissue. The
homogenates were centrifuged at 4000 g at 4°C for 10
minutes, and the resulting supernatants were aliquoted
and stored at -80°C until further analysis.

3.4. Cholinesterase Activity Analysis

Cholinesterase activity was measured using a
photometric method, following the manufacturer’s
instructions (Biorex, Shiraz, Iran). Each sample was
measured at least twice, and if the coefficient of variation
(CV) transgressed 15%, it was repeated until the CV was less
than 15%. The mean values of the duplications were used
for statistical analysis.

3.5. Statistical Analysis

Thedata are presented asmean ± standard error of the
mean (SEM) and analyzed using unpaired student’s t-test.
Statistical analysis was performed using SPSS software.
A P-value of less than 0.05 was considered statistically
significant.

4. Results

The amounts of cholinesterase activity in the
cerebellum and prefrontal cortex of the rats exposed
to a light/dark cycle of 45/45 minutes was significantly
lower than in the rats exposed to a 12/12 hours light/dark
cycle (Table 1).

5. Discussion

Spaceships must orbit the Earth at a speed whose
angular acceleration is equal to the Earth’s gravity in
order not to go out of orbit. Therefore, spacecraft,
such as the International Space Station, which rotates at
an altitude of approximately 408 km above the Earth’s
surface, orbits the Earth once every 90 minutes. This
means that it orbits the Earth approximately 16 times per
day, and, therefore, astronauts experience approximately
16 sunrises and sunsets per day, each lasting about 45
minutes (1). Therefore, astronauts experience a rapid
day/night cycle, which disrupts the normal circadian
rhythm from 12/12 hours to 45/45minutes, which can have
profound effects on the astronaut’s physical and mental
health. This study aimed to investigate the impact of
this stressor on cholinesterase activity, specifically in the
prefrontal cortex and cerebellum of rats. Therefore, we
exposed rats to spacecraft conditions (i.e., 45/45-minute
light/dark cycle) for 14 days. The findings of this study
indicated that the disruption of the light/dark cycle had
a significant impact on the amount of cholinesterase
activity in the cerebellum and prefrontal cortex of rats.

A previous study has shown that changing the
circadian cycle from 12/12 hours to 45/45minutes increases
the level of retinoic acid in the serum and hippocampus
of rats (12). It seems necessary to conduct further studies
on the effects of circadian disruption on the brain, such as
the alteration of cholinesterase.

Cholinergic signaling, specifically cholinesterase, is
simultaneously involved in central cognitive processes
suchas learning,memory, and stress responses,mediating
neuromuscular and anti-inflammatory responses (12). The
cholinergic systemhasbeen showntohavea critical role in
the cerebellum and prefrontal cortex (8, 9). Acetylcholine
signaling suppresses inflammation in the brain (13).
Previous research demonstrates that inflammation
stimulates the release of ACh (14). Acetylcholine can
reduce inflammation by decreasing the release of
pro-inflammatory cytokines, such as TNF-α (15), and
directly inhibits inflammation (16). Cholinesterase, which
regulates the concentration of ACh, is reduced in many
inflammatory diseases (17-21). It is hypothesized that
the reduction in cholinesterase activity might lead to an
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Table 1. Effect of Circadian Disruption on Cholinesterase Activity (U/L) in the Prefrontal Cortex and Cerebellum of Rats a

Variable 12/12-Hour Day/Night Cycle 45/45-Minute Day/Night Cycle P-Value

Prefrontal cortex 122.2 ± 10.8 74.9 ± 13.3 b 0.014

Cerebellum 271.9 ± 26.3 191.4 ± 18.6 b 0.017

a Data are expressed asmean ± SEM and analyzed by Unpaired Student’s t-test.
b P< 0.05.

increase in ACh levels during inflammation, subsequently
modulating the inflammatory response.

Considering that circadian disruption can induce
inflammation, it is plausible to suggest that one of
the potential causes of the decrease in cholinesterase
activity observed in the present study is the occurrence
of inflammation in such a situation. Moreover, previous
studies have indicated that circadian disruption can
contribute to the occurrence of inflammation (4, 22, 23).

Inflammation in theupperparts of thebody, especially
in the brain, can influence the functions of the cerebellum
and prefrontal cortex, which play pivotal roles in various
human activities; therefore, understanding the impacts
of space traveling and its underlying mechanisms on
these brain regions is of great importance. Further
investigations are needed to fully elucidate the underlying
mechanisms through which disrupted circadian rhythm
induces inflammation and affects cholinesterase activity.
Understanding these mechanisms will be crucial for
developing effective strategies to mitigate the adverse
effects of space travel on the brain, particularly cognitive
functions controlled by the cerebellum and prefrontal
cortex.

This study provides valuable insights into the impact
of changes in the light/darkcycleoncholinesteraseactivity
in the cerebellum and prefrontal cortex. The observed
decrease in cholinesterase activity suggests a potential
link between these interventions, inflammation, and
modulation of the cholinergic system. Further research
is warranted to validate these findings and explore the
precise mechanisms involved, with the ultimate aim of
safeguarding the brain function of astronauts during
spacemissions.

5.1. Conclusions

It seems that cholinesterase activity in rats’ cerebellum
and prefrontal cortex reduces following exposure to rapid
light/dark rhythm.
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