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Abstract

Alzheimer's disease (AD) presents a significant challenge in healthcare, necessitating accurate and timely diagnosis for effective

management. Resting-state functional magnetic resonance imaging (Rs-fMRI) has emerged as a valuable tool for understanding

neural correlates and the early detection of AD. This article reviews recent advancements in utilizing Rs-fMRI in combination

with machine learning (ML) techniques for early AD diagnosis. First, we discuss the underlying principles of Rs-fMRI,

highlighting its ability to detect alterations in brain functional connectivity (FC) patterns associated with AD. We then explore

the potential of ML algorithms, particularly support vector machines (SVMs), in analyzing Rs-fMRI data and discriminating

between AD patients and healthy controls. We indicate the challenges and opportunities in integrating Rs-fMRI and ML, such as

in data preprocessing, feature selection, and model interpretation. We also address the importance of large-scale, multi-site

studies to validate the robustness and generalizability of the proposed approaches. Overall, the integration of Rs-fMRI and ML

holds great promise as a non-invasive, objective, and sensitive diagnostic tool for AD, potentially enabling early detection and

personalized treatment strategies. However, further studies are warranted to optimize methodologies, enhance interpretability,

and facilitate clinical translation.
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1. Context

Alzheimer's disease (AD) is a progressive neurological

disorder that is widely recognized as the leading cause

(1) and the most common form of dementia, accounting

for 60 - 80% of all dementia cases (2). Alzheimer's disease

was first described in 1906 by German Alois Alzheimer as
an abnormal accumulation of the amyloid-beta peptide,

which leads to the formation of amyloid plaques,

phosphorylation and aggregation of tau protein, and an

inflammatory process that eventually leads to synapse

loss and neuronal death. This aberrant amyloid-beta

accumulation could be explained by a long-term

increase in neuronal activity, specifically in the brain

network's most active parts, leading to histological and

imaging alterations. On the other hand, the symptoms

include gradual memory loss, learning disability, loss of

capacity to conduct basic activities of daily life,
confusion, and behavioral and personality changes (3).

Indeed, dementia induced by AD can result in tissue loss

throughout all brain regions, causing severe harm to

the neural system and disrupting neural functioning,
reducing the patient's cognitive ability. Tissue loss

begins in the grey matter (GM) and subsequently

spreads to the white matter (WM), corpus callosum (CC),

and hippocampus (HC) (4). The HC, the brain region

responsible for memory formation, is significantly
affected by AD and tissue loss (5). Alzheimer's disease is a

growing concern around the world, with 35 to 46.8

million people worldwide suffering from it recently.

This figure will double every 20 years, reaching 74.7

million in 2030 and 131.5 million in 2050, with an annual
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incidence of 9.9 million persons. The primary cause of

this increase is low and middle-income countries, which

accounted for 58% of patients with dementia in 2015 and
will increase to 68% by 2050, while high-income

countries are expected to represent a 50% increase
compared to today (6). Although prevalence studies of

younger-onset dementia in the United States are sparse,

researchers estimate that 110 out of every 100,000
patients aged 30 - 64 have younger-onset dementia (7).

According to statistics, one Alzheimer's patient dies
every three seconds around the world, and dementia-

related costs continue to rise (8). However, due to a lack

of awareness of AD, the majority of individuals are

diagnosed in the intermediate to severe stages, missing

the ideal time for early treatments (1). Alzheimer's
disease is classified into three stages: Normal control

(NC), mild cognitive impairment (MCI), and AD. Mild
cognitive impairment, in particular, is an early stage of

AD defined as an intermediate state between AD and

normal function (9). While there is presently no
treatment for dementia, new medications can halt the

progression of individuals who have not yet reached the
MCI stage. As a result, anticipating the proper time

when cognitively normal patients would develop MCI is

critical (10). Therefore, there is an urgent need to
develop AD identification models to enable precise early

detection of AD and MCI, allowing for prompt
interventions and maximum cost-effectiveness in future

treatments (2). Nonetheless, early detection necessitates

utilizing complex algorithms, a time-consuming and
arduous process. The primary goal is to improve the

accuracy of AD prediction, although detection is also
substantial. As a result, we require robust, cutting-edge,

non-traditional technologies such as machine learning

(ML) techniques (5).

Machine learning has grown in importance in

disease identification and treatment over the last few

years (11). It is a type of artificial intelligence (AI)

technology used for classification, regression,

clustering, and normative modeling classified as

supervised models labeled by data, unsupervised

algorithms, in which the goal is to segregate unlabeled

data into groups of related cases, and semi-supervised

algorithms, which include both labeled and unlabeled

data. A ML algorithm is a method for picking the best

model from a set of alternatives that fit a set of

observations and has various advantages, such as

nonlinearity, fault tolerance, and real-time operation,

making it appropriate for complicated applications.

Support Vector machine (SVM), K-Nearest neighbors (K-

NN), logistic regression classification (LRC), random

forest (RF), and artificial neural networks (ANN) are

some of the most common ML classifiers. In contrast,

deep learning (DL) technology can automatically extract

valuable features from complicated image data,

avoiding complex human feature extraction stages and
saving a lot of workforce and material resources.

However, there are several limitations to DL technology.
It necessitates a substantial amount of labeled data for

training, which may result in costly data collection,

annotation, and scarcity in certain regions.
Furthermore, DL training and reasoning typically

require significant computational resources, which can
result in high computing expenses and energy usage. In

addition, DL models are frequently referred to as "black

boxes" since their inner workings are difficult to

comprehend and can limit applications in fields that

demand interpretability, such as healthcare and finance.
Moreover, they may not generalize to new, unexplored

data, resulting in over-fitting issues via shifting tasks
between domains (8). Despite significant advances in DL

algorithms, traditional ML techniques are still preferred

in developing AI diagnostic models due to their distinct
advantages. They require fewer data points and have

better interpretability (12). Machine learning methods,
such as SVM, have shown promise in distinguishing AD

patients from healthy controls (HC) using brain

imaging data. Support vector machine works by
identifying a hyperplane that divides the data points

into different classes to maximize the margin between
the hyperplane and the closest data points. It can also

handle high-dimensional data, such as brain imaging

data in AD research (2). The naive Bayes and RF models
were found to be optimal for predicting MCI and AD

susceptibility, respectively (13). The extreme gradient
boosting (XGB) model, which used a combination of

clinical and imaging characteristics, showed promise

for predicting the likelihood of MCI in those with
normal cognitive function (14). Following this, Franke et

al. (15) employed a recommended relevance vector
machine (RVM) model to predict brain age by

combining GM and WM images. Wang et al. also

improved age prediction performance by integrating
partial least squares regression with a stacking

algorithm to merge two imaging models: Structural MRI
(sMRI) and functional MRI (fMRI) (16). The outstanding

performance of these models in brain tumor diagnosis

represents a significant step forward in this field, with
the promise of providing more precise and reliable tools

for radiologists and healthcare professionals in their
critical role of identifying and classifying brain tumors

using MRI imaging techniques (17).

Magnetic resonance imaging (MRI) is used in medical

diagnosis to visualize the structure and function of the

brain. Physicians examine AD symptoms and administer

numerous tests to diagnose dementia. Magnetic
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resonance imaging scans can detect anomalies in the

brain linked with MCI and predict which MCI patients

are more likely to develop AD in the future (6). Magnetic

resonance imaging, including sMRI and fMRI, is the

prominent medical imaging method for understanding
and evaluating the anatomical alterations in sensitive

regions associated with AD (4). The fMRI produced

encouraging results based on sensitivity measures from

several ML approaches. Observation of fMRI techniques

will aid in dementia detection and changes in neuron
connections, which will determine changes in brain

function. Functional magnetic resonance imaging is

classified as a non-invasive technology since it focuses

on measuring and mapping brain processes without

injecting any tracer into patients' bodies (18). The sMRI
technique is more convenient than other neuroimaging

techniques for detecting structural changes. Indeed,
sMRI demonstrates brain tissue shrinkage, particularly

in the HC, confirming the structural change in the brain

(9). However, structural characteristics were retrieved
inadequately throughout the sMRI scan. In that

circumstance, resting-state fMRI can provide more
valuable and complementary information in identifying

early-stage dementia and AD in each patient (18).

Resting-state fMRI is an imaging technique that alters
the nuclear magnetic signal by adjusting the blood

oxygen level. It has been widely used in research on
various neuropsychiatric diseases such as stroke,

Parkinson's disease (PD), AD, and depression. Numerous

resting-state functional magnetic resonance imaging
(Rs-fMRI) studies have shown brain functional

reorganization in MCI patients. As a result, Rs-fMRI is
practical for investigating brain function in MCI

patients (19). It also assesses functional connectivity (FC)

to precisely and efficiently detect biomarkers for AD (2),

as well as objective neuroimaging indicators for the

research of affective disorders by examining the

activities of live brains (20). Therefore, researchers can

predict brain age using Rs-fMRI data, allowing us to

study neuronal activation in the human brain by

integrating ML algorithms.

1.1. Utilizing Multimodal Neuroimaging Data

Neurologists are increasingly interested in using

multimodal neuroimaging data such as fMRI and sMRI

in conjunction with powerful ML algorithms to identify

AD and MCI (21). A classification framework using

information from sMRI and fMRI can successfully

predict the conversion of MCI, and distinct brain

regions obtained in this framework from inter-subject

and intra-subject design are most likely diagnostic

indicators for AD (22). Most research has concentrated

on structural MRI, which detects structural alterations

in the brain. However, studies have revealed that fMRI

alterations begin before structural changes, and resting-

state FC may be a more sensitive technique to detect

brain changes in preclinical AD patients (23). Zhang et
al. found aberrant FC in resting-state networks when

MCI progressed to AD (24). Reduced FC in the Malaysian

population is caused by accelerated neurodegeneration,

which can be detected early using fMRI with improved

diagnostic accuracy of approximately 82.6% sensitivity
and 79.1% specificity in distinguishing AD from HC (25).

As a result, fMRI provides insights into cerebral activity,

which helps detect functional changes before

conspicuous anatomical changes appear (26). Hence,

the potential of ML-based fMRI applications for
automated diagnostic procedures to identify MCI

patients has recently been highlighted (27).

1.2. Resting-State Functional Magnetic Resonance Imaging
for Early Detection of Alzheimer's Disease

Resting-state functional magnetic resonance

imaging is a promising method for detecting functional
damage in the early stages of AD, bridging the gap

between molecular-level pathogenic alterations,
physiological functional loss, macro-level tissue loss,

and neurodegeneration. Compared to other functional

imaging approaches, it has several advantages. It does
not require research participants to perform any action,

making it helpful in imaging uncooperative patients by
requiring merely their immobility while obtaining

images. Several Rs-fMRI studies have demonstrated

changes in the default mode network (DMN), a core
network among resting state networks (RSNs), and a

decline in brain function caused by various illness states

such as AD. Abnormal DMN functioning according to Rs-

fMRI is a significant pathogenic characteristic of AD

patients, as evidenced by decreased FC in the DMN

compared to MCI and HC (28). Resting-state functional

magnetic resonance imaging can be utilized to detect

remodeling of large-scale network (LSN) brain FC in

dementia patients, which has the potential to help

physicians in illness assessment and serve as a

biomarker in the prediction of AD progression risk (29).

Cortical and subcortical brain regions have been

thought to exhibit a prime pattern of ongoing

connectome across the human brain at rest, indicating

that Rs-fMRI is a reliable measure of FC research (30).

The resting-state FC is mainly stable amid cognitive

decline and AD pathology, implying that it could be a

possible hallmark for determining underlying cognitive

status and predicting the likelihood of future AD

conversion (31). Fundamentally, one of the most
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essential properties of Rs-fMRI is its capacity to measure

longitudinal FC changes, which are more profound in

the early stages of the disease than in the late stages (32).

The inter-synchronization of neuron clusters that leads

to FC is recognized by spontaneous low-frequency

fluctuations in the blood oxygen level dependent

(BOLD) signal, and these clusters are known as RSN or

intrinsic connectivity networks (ICN). Resting state

network FC patterns yield more valid inferences about

cortico-cerebellar and cortico-subcortical connectivity

estimates than structural connectivity studies (30). As a

result, the analysis of Rs-fMRI signals has expanded our

understanding of the brain mechanisms underlying

cognitive and sensory functions (33). In fact, it has the

potential to be a tool for evaluating macroscale

connectomics and characterizing intrinsic brain activity

(IBA). Since the first study on Rs-fMRI, in which the left

and right hemisphere regions exhibited a strong

association with the BOLD signal, various researchers

have been drawn to this technique to assess

spontaneous brain activity (34). Resting-state functional

magnetic resonance imaging is a frequently used

technology for studying IBA in AD, and IBA analysis can

aid in the early detection of disorders before brain

shrinkage develops and in understanding the

pathophysiological mechanism of AD by examining the

relationship between changes in brain activity and

cognitive behavior (35) Static regional homogeneity

(ReHo) has been utilized to explore IBA in AD using Rs-

fMRI to investigate the modifications in dynamic IBA to

find dynamic imaging indicators of AD (28). A unique

neural activity (NA) metric based on Rs-fMRI signal

oscillations demonstrated considerably reduced NA,

indicating that the significant decrease in NA identified

in MCI patients is particularly sensitive to early

alterations in neuronal function (36). Moreover, Aβ
deposition reduces NA in AD and MCI, as evaluated by

Rs-fMRI (37). These findings support the concept that Rs-

fMRI can detect changes in spontaneous brain activity

and FC in response to Aβ retention. As a result, multiple

investigations have found that Rs-fMRI performs well in

identifying AD (38).

1.3. Machine Learning in Neuroimaging Analysis

The SVM is one of the most used ML algorithms and

has surpassed practical neuroimaging analysis over the

last 20 years. Because of its relative simplicity and

flexibility, SVM has been employed in various fields to

solve various categorization challenges. Hundreds of

researchers have used ML to classify individuals with

diverse mental and neurological illnesses, improving

early diagnosis. Due to its relative simplicity, SVMs are

used in brain disorder research via multivoxel pattern

analysis (MVPA) to tackle various clinical problems. Even

when dealing with high-dimensional data, SVMs have a

decreased risk of over-fitting. SVM analysis can predict

diagnosis and prognosis, especially in individuals with

brain illnesses such as AD, schizophrenia, and

depression. It can characterize non-linear choice

limitations in a high-dimensional variable space by

addressing a quadratic improvement issue (39). As a

matter of fact, SVM is an ML-based pattern classification

strategy that has distinct advantages in addressing

small-scale sample learning issues and has been widely

used in biological data analysis (40).

The SVM classifier is developed to classify AD using

higher-order dynamic functional brain networks at

various frequency ranges. Khazaee et al. (41) used linear

SVM classifiers to diagnose AD with 100% accuracy.

Syaifullah et al. achieved 90.5% accuracy in AD diagnosis

using SVM on a restricted dataset (38). According to

typical brain connection analysis techniques, brain

connectivity remains consistent during the fMRI

imaging technique. However, current data suggests that

the brain connectivity connection exhibits dynamic

changes during the resting state using an SVM classifier

in higher-order dynamic functional networks with

significant potential for diagnosing AD (42) . The efficacy

of Rs-fMRI for multi-class AD classification using SVM

was demonstrated with an accuracy of 86.86% (43). Yan

et al. used a multimodal SVM-based ML algorithm to

combine Rs-fMRI and diffusion tensor imaging (DTI)

data, achieving an accuracy of 98.58% in the AD group,

97.76% in the amnestic MCI group, and 80.24% in the

subjective cognitive decline (SCD) group (35). XGB +

Decision Tree + SVM with optimized parameters

surpassed all other models, with 95.75% efficiency. The

implication of the proposed ensemble-based learning

approach outperforms previous ML models. Costafreda

et al. employed SVM to detect MCI with 80% and 77%

sensitivity, respectively (44). K-nearest neighbor KNN

and SVM classification algorithm models are utilized to

investigate and classify AD, demonstrating that Rs-fMRI

multi-band characteristics have more potential as AD

biomarkers than single-band features (45).

Furthermore, the decreased ReHo of the right caudate

was identified as a possible biomarker for MCI diagnosis

using SVM. The SVM results indicated a diagnosis

accuracy of 68.6%, and this is the first study to use fMRI

data to illustrate the relationship between the right

cerebrum and MCI using ML (39). Furthermore, the

findings of the SVM and ANN-based methods suggested

the best accuracies of 80.36% and 74.40%, respectively,

and the optimal accuracies for AD and MCI were 79.55%

and 78.79% in the SVM-based method. As a result, the
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SVM-based technique with multimodal measurements

could provide practical diagnostic information for

detecting AD and MCI (21).

2. Conclusions

Resting-state functional magnetic resonance

imaging and ML hold significant promise as diagnostic
tools for AD. Through the analysis of brain FC patterns

and the application of advanced ML algorithms, these

technologies offer non-invasive, early detection
capabilities, allowing for timely intervention and

personalized treatment strategies. However, further
research and validation studies are necessary to

optimize their clinical utility, address challenges such as
data standardization and replication, and ensure their

integration into routine clinical practice for the

effective management of AD. Despite these challenges,
the convergence of Rs-fMRI and ML represents a pivotal

advancement in AD diagnosis, offering hope for
improved patient outcomes and enhanced

understanding of this complex neurodegenerative

condition.
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