
Ann Mil Health Sci Res. 2018 September; 16(3):e85194.

Published online 2018 December 8.

doi: 10.5812/amh.85194.

Research Article

The Effect of Continuous Aerobic Exercise on Hyperphosphorylated

Tau Protein in Diabetic Rats

Mahnaz Omidi 1, *, Mohsen Ghanbarzadeh 2, Masoud Nikbakht 2, Abdolhamid Habibi 2 and Rohola
Ranjbar 2

1PhD Student, Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran

*Corresponding author: Department of Physical Education, Shahid Chamran University of Ahvaz, Ahvaz, Iran. Tel :+98-9183447698, Email: m2omidi@yahoo.com

Received 2018 October 09; Revised 2018 November 30; Accepted 2018 November 30.

Abstract

Background: In neurodegenerative complications, the function and structure of the neurons undergo a change, which eventually
cause the death of neurons.
Objectives: The purpose of this research was to determine the effect of continuous aerobic exercise on neurodegeneration in dia-
betic rats.
Methods: A total of 84 male Wistar rats were divided into four groups, including: (1) sedentary control (SC), (2) trained control (TC),
(3) sedentary diabetic (SD), and (4) trained diabetic (TD). The exercise protocol in this study comprised of 12 weeks, three sessions
per week.
Results: There was no significant difference in the level of tau protein hyperphosphorylation in four weeks of training (P = 0.128),
however, there was a significant difference in the 8th and 12th weeks of training (P = 0.000). In addition, the results showed that
there was a significant difference in tau protein hyperphosphorylation in different stages (4th, 8th, and 12th weeks of training) (P =
0.000).
Conclusions: It can be concluded that in all three different time periods (4th, 8th, and 12th weeks of training), the levels of tau pro-
tein hyperphosphorylation in the control and diabetes groups were more than those in the training, diabetes, and exercise groups.
On the other hand, the higher the incidence of diabetes mellitus, and the more time gone (from 4th to 8th and then 12th week), the
higher increase in the level of tau hyperphosphorylation occurred, so that continuing aerobic exercise could reduce the amount of
this variable.
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1. Background

Diabetes mellitus is a metabolic disease, that appears
as a result of reduced insulin production or insufficient in-
sulin action in the metabolism of glucose (1). This disease
causes long-term problems such as cardiovascular disease,
neuropathy, retinopathy, and nephropathy (2). According
to the latest studies, there is a unique relationship between
diabetes and Alzheimer’s disease (AD), thus, AD may be af-
fected by increased blood glucose levels. It has also been
proven that individuals with diabetes are most likely to ex-
tend AD than healthy people (3). AD is a neurodegenerative
anomaly in which there are many biological disorders. In
AD, two important kinds of disorders have been detected
and examined extensively: The amyloid plaques and the
neurofibrillary tangles (NFTs) (4).

Tau proteins perform a prominent role in maintain-

ing the structure of microtubules and the proper function
of neurons; however, if phosphate molecules connect to
them, they separate from the microtubules and eventually
break down the tubules. Tau molecules then accumulate
together and form NFTs (5, 6). The hippocampus is a por-
tion of the brain that has a great role in memory and learn-
ing and emotional processes (7).

According to the previous studies, neurodegeneration,
due to AD, is more common among diabetic patients than
healthy individuals. Besides, since this relationship has
been discovered in recent years, limited research has been
done in this context, especially in the field of exercise in
preventing the onset of AD in diabetic patients. While
more research has been done on AD alone, limited research
has been done on whether patients with diabetes are at a
risk of neurodegeneration and subsequently AD after dia-
betes. Considering the contradictory views on the occur-
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rence time of neurodegeneration in people with diabetes
(8, 9), as well as the limited research on the effect of exer-
cise on neurodegeneration in the hippocampus of diabetic
patients, it was attempted to investigate hyperphosphory-
lated tau protein (HTP) levels in male Wistar rats 4, 8, and
12 weeks after inducing diabetes, and continuous aerobic
exercise (CAE) to observe when levels of HTP increase.

2. Objectives

The present study aimed to find out whether the
amounts of HTP increase 4, 8, and 12 weeks after induc-
ing diabetes in rats; also, whether or not 4, 8, and 12
weeks of continuous aerobic exercise (CAE) will decrease
the amount of HTP in diabetic rats.

3. Methods

3.1. Animals and Treatment

A total of 84 male Wistar rats (weight: 281±28 g; age: 24
weeks old) from Ilam University of Medical Sciences Cen-
ter were maintained in Animal lab at Azad University, Ilam
Branch, and used in the present experiment. Rats were
kept in an environment with a temperature of 21 ± 2°C, 12
h/12 h cycle of darkness and light, and humidity of about
60 ± 5%.

3.2. Induction of Diabetes

In this study, rats were diabetic with nicotine amide
and streptozotocin (stz) (10). First, nicotine amide (95
mg per kg body weight dissolved in saline solution) was
injected intraperitoneally. After 15 minutes, 55 mg/kg of
streptozotocin dissolved in 0.5 mL of citrate buffer solu-
tion was injected intraperitoneally. Five days later, blood
glucose levels were measured in fasting blood samples of
rats, and the blood glucose level of 126 - 400 mg/dL indi-
cated that they were diabetic (11).

3.3. Experimental Design

In this study, 84 rats were randomly divided into 4
groups (21 rats in each group). Considering that at the end
of 4th, 8th, and 12th weeks of training, seven subjects of
each group were operated at each stage, thus, 21 subjects
were selected for each group. The exercise protocol com-
prised of 12 weeks and three sessions a week, with the in-
tensity and duration of the exercise being determined by
the principle of overloading. In short, the speed of the ex-
ercise program began at 12 m/min in the first week. From
the second week, the training speed increased weekly by

1 m/min. The training period from the 2nd-10th weeks in-
creased on a regular basis for two minutes and 20 seconds
each session. The duration of activity from 15 minutes on
the first day of the first week reached 80 minutes in the
tenth week. In this stage, the intensity of activity was deter-
mined by the speed, that is, the duration of activity from 15
minutes on the first day reached 80 minutes at the begin-
ning of the 11th week and then remained at that value (12).

3.4. Statistical Analyses

The dependent variable was analyzed by One-way anal-
ysis of variance (ANOVA) and repeated measures analysis of
variance. Significance level was determined at P ≤ 0.05.

4. Results

After executing the exercise protocol (Figure 1) the re-
sults showed that there was no significant difference in
baseline weight in all three different time periods (4, 8, and
12 weeks) (P = 0.428, P = 0.584, P = 0.406, respectively). How-
ever, the weight of the subjects was significantly different
after 4, 8, and 12 weeks of exercise training (P = 0.001) (Table
1).

The subjects had a significant difference in fasting glu-
cose (both in baseline glucose and after three different
training period time) (P = 0.001) (Table 1). The results of
ANOVA test showed that there was no significant difference
in the factor of HTP during four weeks of exercise train-
ing (P = 0.408), however, there was a significant difference
between the 8th and 12th weeks of exercise training (P =
0.001) (Table 2). The results of Bonferroni’s post hoc test
are indicated in Table 3.

In 4, 8, and 12 weeks, the rate of HTP in SC and SD groups
were more than the ST and TD groups, and the longer the
time passes (from 4 weeks to 8 and then 12 weeks), the rate
of HTP increased, CAE decreased the level of HTP (Figure 2).

Standard error bar showed in all three time (Figure 3).

5. Discussion

Findings of the study indicated a significant change in
the HTP after 4, 8, and 12 weeks of training, so that the more
time passed from induction of diabetes (from 4 weeks to 8
weeks and then 12 weeks), the rate of HTP was increased,
and CAE decreased the level of this variable. Some studies
also provided similar results (12-18) and some studies have
contradictory results (9, 19).

Liu et al. showed that the level and the activation of
PI3K/Akt signaling pathway in their anterior cortex was
greatly reduced and a large amount of glycogen synthase
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Table 1. Baseline Demographic Characteristics of Groups

Variables SCG TCG SDG TDG P Value

4 Weeks

Weight, g

Baseline 281.2 ± 39.7 269.2 ± 34 284.1 ± 24.5 261.1 ± 14 0.428

After 4 weeks 285.2 ± 37.4 279.2 ± 34 218.1 ± 21.5 241.1 ± 30.6 0.001

Fasting glucose, mg/dL

Baseline 88.2 ± 9.9 93.4± 3.8 368.8 ± 19.9 369.2 ± 44.5 0.001

After 4 weeks 86.1 ± 9.6 84.8 ± 5.8 350.1 ± 101.9 205.2 ± 112.8 0.001

8 Weeks

Weight, g

Baseline 286.7± 25.1 281.7± 14.3 288 ± 15.8 275.4 ±17.1 0.584

After 8 weeks 292.4 ± 22.2 299.8 ± 17.2 213.2 ± 45.7 251.4 ± 29.4 0.001

Fasting glucose, mg/dL

Baseline 89.5 ± 5.6 87.7 ± 4.4 363.2 ± 52.5 362 ± 51.94 0.001

After 8 weeks 90.5 ± 6 73.2 ± 10.3 419.4 ± 97.6 212.4 ± 98.7 0.001

12 Weeks

Weight, g

Baseline 300 ± 1.4 283.2 ± 10 288.4 ± 20.1 278.7 ± 40 0.406

After 12 weeks 300.8± 16.9 316.8 ± 14.4 212.2± 45.3 294.5± 42.4 0.001

Fasting glucose, mg/dL

Baseline 92.1 ± 8.9 93.2 ± 5.7 331.5 ± 62 333.2 ± 54.2 0.001

After 12 weeks 91.8 ± 7.5 79.8 ± 8.7 452.1 ± 118.8 93.4 ± 15.1 0.001

Abbreviations: SCG, sedentary control group; SDG, sedentary diabetic group; TCG, trained control group; TDG, trained diabetic group.

Table 2. Hyperphosphorylated Tau Protein (HTP) Levels During 4, 8 and 12 Weeks

Time, wk SCG TCG SDG TDG P Value

4 26.3 ± 3.8 19.3 ± 1.6 23.1 ± 2.1 22.1 ± 5.1 0.408

8 28.8 ± 3.2 20.7 ± 2.7 38.8 ± 4.7 24.6 ± 8.8 0.001

12 30.4 ± 3.3 17.3 ± 3.3 46.3 ± 4.3 18.9 ± 5.1 0.001

Abbreviations: SCG, sedentary control group; SDG, sedentary diabetic group; TCG, trained control group; TDG, trained diabetic group.

kinase 3 beta (GSK-3β) was phosphorylated and a great deal
of abnormal HTP was seen. It is amazing that the decrease
of this signal pathway was much more in people suffer-
ing from both diabetes and AD (20). One of the mecha-
nisms that causes HTP in diabetic patients is reduced glu-
cose metabolism in the brain due to Glut1/3 deficiency (21).
GSK-3β is one of the major causes of abnormal tau hyper-
tension in the brain of patients with degeneration (22).

Abnormal GSK-3β contributes to various diseases, in-
cluding mental disorders, brain strokes, traumatic head
injuries, and in particular, type 2 diabetes (23). Initially,
GSK-3 function was only phosphorylation of glycogen syn-

thase (GS) and eventually deactivating it, however, re-
cently, many research results have indicated that GSK-3
could phosphorylate the tau protein as well (24, 25). Hyper-
activation of GSK-3β increases the unusual HTP and en-
hances the progression of the disease in people with AD
(26). GSK-3β has a key role in pathological alterations of
tau protein in AD (27). Past research suggests that the
PI3K/Akt/GSK-3β signaling pathway has an important im-
press on neuro preservation and strengthens cellular life
by stimulating cell duplicate and interdict apoptosis (28,
29). However, inaccurate performance of this signaling
pathway will raise GSK-3β action and as a result, HTP hap-
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Figure 1. A summary of the tasks. Abbreviations: DG, division of groups; DI, diabetes induction; WM, weight measurement; FBGM, fasting blood glucose measurement; HTPM,
hyperphosphorylated tau protein measurement; Before, before exercise training programs; After, after each phase.

Table 3. Multiple Comparisons (Bonferroni)

(I) Time,
wk

(J) Time,
wk

Mean Difference (I - J) Standard
Error

P
Value

4

8 -6.8* 0.7 0.000

12 -9.6* 0.65 0.000

8

4 6.8* 0.73 0.000

12 -2.8 0.78 0.004

12

4 9.6* 0.65 0.000

8 2.8* 0.78 0.004

pens.

In some studies, by transferring GSK-3β to the rat
marrow, it indicates that GSK-3β induced neurodegener-
ation (30, 31). Therefore, HTP is accompanied with the
PI3K/AKT/GSK-3β signaling pathway, and excessive preven-
tion of GSK-3β can reduce HTP and ultimately reduces the
progression of AD (32). It has been confirmed that GSK-3β
has a prominent role in diabetes mellitus (33, 34).

Kim et al. showed that mediocre practice can interdict
the expression of GSK-3β in diabetic rats by interdicting
HTP in the hippocampus (12).

GSK-3β is a kinase in the transmission of insulin signal
and tau phosphorylation that plays a main double role in
the creating and exacerbation of insulin resistance, there-
fore, we assume that GSK -3β is a link between diabetes and
AD (26).
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Figure 2. The levels of hyperphosphorylated tau protein (HTP) in all groups

GSK-3β phosphorylated tau protein and over activa-
tion (GSK-3β) stimulate abnormal phosphorylation of tau
and cause the accumulation of NFTs in AD (35, 36).

PI3K/Akt pathway inhibits GSK-3β, resulting in the sur-
vival of cellular life (37). Reverse PI3K/Akt pathway rejec-
tion restores GSK-3β activity, resulting in cell death. The
PI3K/AKT signaling pathway is a classic anti-apoptotic path-
way that regulates the transmission of the survival signal.
PI3K/Akt pathway activity plays a supportive role in many
conditions of neuropathy (38).
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Figure 3. Standard error bar in all three time

In general, the PI3K/Akt signaling pathway activity de-
creases through time in the brain of diabetic rats and the
expression of GSK-3β increases, which itself causes HTP as
a symptom of AD, and exercise training can upregulate the
PI3K/AKT signaling pathway and activate GSK-3β (39).

5.1. Conclusion

It can be concluded that over time diabetic patients are
at risk of increased AD than healthy people, and they can
prevent AD with CAE.
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