
Ann Mil Health Sci Res. 2019 September; 17(3):e96175.

Published online 2019 September 2.

doi: 10.5812/amh.96175.

Research Article

Determination of H2O2 in Human Serum Samples with Novel

Electrochemical Sensor Based on V2O5/VO2 Nanostructures

Maryam Fayazi 1, *

1Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

*Corresponding author: Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology,
Kerman, Iran. Tel: +98-3431623173, Email: maryam.fayazi@yahoo.com

Received 2019 July 09; Revised 2019 August 01; Accepted 2019 August 08.

Abstract

Background: Highly selective and sensitive analysis of hydrogen peroxide (H2O2) has attracted considerable interest in the fields
of clinical diagnostics, food industry, and environmental analysis.
Objectives: In the present study, an efficient electrochemical sensor, based on V2O5/VO2 nanostructures, was introduced for mea-
suring hydrogen peroxide (H2O2) in human serum samples.
Methods: The characterization of the prepared V2O5/VO2 nanostructures was investigated by X-ray diffraction (XRD), Fourier trans-
form infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). A carbon
paste electrode (CPE) modified with V2O5/VO2 was applied for the electrochemical detection of H2O2.
Results: The prepared sensor depicted a good linear range from 8 to 215µM and a low detection limit of 5µM. Moreover, the modified
electrode showed notable anti-interference property and high sensitivity toward H2O2 detection. The suggested method was also
successfully applied for the determination of H2O2 in human serum samples.
Conclusions: The V2O5/VO2 embedded CPE offers good simplicity, sensitivity, and selectivity toward H2O2 determination. In addi-
tion, the suggested assay revealed good reproducibility and anti-interference property in the measuring of H2O2.
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1. Background

H2O2 plays a prominent role in different areas includ-
ing clinical diagnostics, food industry, pharmaceutical,
and environmental protection (1). An excessive accumula-
tion of H2O2 in the human body can lead to some diseases
such as DNA fragmentation and tissue damage (2). Conse-
quently, the accurate measuring of H2O2 in biological sam-
ples is very important. To date, various analytical methods
have been developed for determination of H2O2, including
chromatography (3), spectrophotometry (4), and chemilu-
minescence (5). However, above mentioned techniques are
high costs, complex, and time-consuming.

Electrochemical H2O2 sensing has attracted growing
attention due to the intrinsic advantages such as simple
operation, cost effective, rapid response, and suitability for
real-time H2O2 analysis (6). In view of this, the design and
fabrication of novel electrochemical sensors for H2O2 de-
termination has attracted considerable interest in recent
years (7, 8).

2. Objectives

In this study, novel V2O5/VO2 nanostructures were suc-
cessfully prepared with the hydrothermal method. The
V2O5/VO2 nanostructures were utilized for modification
of a simple and cheap carbon paste electrode (CPE). The
main experimental factors, calibration range, and detec-
tion limit of the V2O5/VO2-CPE was also explored in detail.
Moreover, the proposed sensor was applied for quantifica-
tion of H2O2 in human serum samples.

3. Methods

3.1. Materials and Apparatus

All materials including thiourea, vanadium chloride
(VCl3), ethanol, ethylene glycol, paraffin oil, graphite pow-
der, and H2O2 were obtained from Merck (Darmstadt,
Germany). XRD pattern was recorded via a PANalyti-
cal Empyrean X-ray diffractometer (Almelo, Netherlands).
SEM image and EDX analysis were performed on a MIRA3
LM TESCAN microscope (Brno, Czech Republic). FT-IR
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spectrum was measured on a Bruker Equinox 55 spec-
trometer (Karlsruhe, Germany). All electrochemical data
were recorded on a potentiostat galvanostat impedance
meter (OrigaState100, OrigaLys, Rillieux-la-Pape, France).
A standard electrochemical cell including the modified
CPE (working electrode), the platinum wire (counter elec-
trode), and the Ag/AgCl (3 M KCl) electrode (reference elec-
trode) was used for electrochemical tests.

3.2. Preparation of V2O5/VO2 Nanostructures

The V2O5/VO2 nanostructures were synthesized via a hy-
drothermal approach. Typically, 7.8 g of VCl3 was dissolved
in a mixed solution of ethanol (50 mL) and ethylene gly-
col (25 mL) under vigorous stirring. Afterward, 7.6 g of
thiourea was added to the above mixture vigorous stirring.
The mixture was transferred into a 100 mL Teflon-lined
stainless-steel autoclave and then heated at 160ºC for 12 h.
The black precipitates were collected via centrifuge separa-
tion, followed by repeated washing with ethanol, and then
heated at 350ºC for 3 h under air condition.

3.3. Electrode Fabrication

The modified CPE (V2O5/VO2-CPE) was fabricated by
mixing of graphite powder (65% w/w), V2O5/VO2 (10% w/w),
and paraffin oil (25% w/w). Then, a portion of the obtained
paste was packed into a glass tube (3 mm in diameter) in
contact with a copper wire for electrical connection.

4. Results

The FT-IR spectrum of the V2O5/VO2 nanostructures
is presented in Figure 1. Absorption peak appearing at
1013 cm-1 is attributed to the stretching vibrations of V=O
groups (9). The peaks at 529 and 828 cm-1 are related to the
symmetric and asymmetric stretching of the V-O-V groups,
respectively (10). The peak at 620 cm-1 can also be assigned
to the stretching of the V-O groups (11).

XRD pattern of the V2O5/VO2 nanostructures is shown
in Figure 2. The observed characteristic reflections were
matched well with the standard XRD data of V2O5 (vana-
dium pentoxide; JCPDS No 76-1803) and VO2 (vanadium
dioxide; JCPDS No 73-2362) (12).

The SEM photograph of the V2O5/VO2 nanostructures
is shown in Figure 3A. As can be seen, the prepared
V2O5/VO2 product has a nano-sized structure. Moreover,
the EDX spectrum of the V2O5/VO2 nanostructures (Figure
3B) shows the existence of vanadium and oxygen elements
in the prepared material. According to these results, the
V2O5/VO2 nanostructures have been successfully prepared
by hydrothermal method.
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Figure 1. FT-IR spectrum of V2O5/VO2 material
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Figure 2. XRD pattern of V2O5/VO2 nanostructures

5. Discussion

The ability of the V2O5/VO2 nanostructures for electro-
chemical reduction of H2O2 was investigated. Figure 4 dis-
plays the cyclic voltammograms of unmodified CPE and
V2O5/VO2-CPE in phosphate buffer (0.1 M, pH = 7) contain-
ing 100µM of H2O2. As can be seen, the V2O5/VO2-CPE shows
a notable reduction peak current, indicating that the re-
duction of H2O2 was improved compared to unmodified
CPE.

To improve the sensitivity of the V2O5/VO2-CPE toward
H2O2 detection, amperometry method was used at applied
potential of -450 mV. The amperometric responses of the
V2O5/VO2-CPE to the successive addition of H2O2 were stud-
ied as shown in Figure 5. The amperometric signal currents
vary linearly with H2O2 concentration over the range of 8
to 215µM with a detection limit (3σ) of 5µM. The detection
limit of the prepared sensor is lower than some reported
H2O2 sensors (13-17), as listed in Table 1. The effect of some
interfering species including glucose, uric acid, dopamine,
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Figure 3. A, SEM image and B, EDX spectrum of V2O5/VO2 nanostructures
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Figure 4. Cyclic voltammograms of the unmodified CPE and the V2O5/VO2 -CPE in
phosphate buffer (0.1 M, pH = 7) containing 100µM of H2O2 with scan rate of 50 mV
s-1

and ascorbic acid was also investigated. The experimental
results (Table 2) show that the prepared V2O5/VO2-CPE can
measure H2O2 with recoveries more than 95% in the pres-
ence of such interfering molecules.

The suggested V2O5/VO2-CPE was validated for the H2O2

quantification in biological samples. Human serum sam-
ples were collected from a local hospital in Kerman. Stan-
dard addition protocol was used in the recovery experi-
ments and the obtained results are listed in Table 3.

5.1. Conclusions

In summary, a novel electrochemical sensor for deter-
mination of H2O2 was presented. The fabricated H2O2 sen-
sor showed a wide linear range and low detection limit.
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Figure 5. Amperometric responses of V2O5/VO2 -CPE to successive addition of H2O2

at the potential of -0.45 V in 0.1 M buffer solution (pH = 7.0). Inset: Calibration curve
of sensor.

The applicability of the V2O5/VO2-CPE for quantification of
H2O2 in biological samples was successfully investigated.
The good simplicity and anti-interference performance of
the present method indicates that the V2O5/VO2-CPE has
great potential working as an efficient H2O2 sensor for clin-
ical applications.
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Table 1. Comparison of Some Different Electrochemical Sensors for Determination of H2O2

Electrode Modifier* Linear Range, µM Detection Limit, µM Ref.

Cuprous oxide-reduced graphene oxide (Cu2O-rGO) nanocomposites 30 - 12800 21.7 (13)

Poly (p-aminobenzene sulfonic acid) (PABS) 50 - 550 10 (14)

Magnetite (Fe3O4) nanoparticles 25 - 5000 7.4 (15)

Hematite (α-Fe2O3) nanoparticles 50 - 3145 22 (16)

Iodide 10 - 60000 10 (17)

V2O5 /VO2 nanostructures 8 - 215 5 This work

Table 2. The Effect of Interfering Species

Co-existing Molecule Recovery, %

Glucose 96.7

Uric acid 98.5

Dopamine 98.3

Ascorbic acid 96.9

Table 3. Determination of H2O2 in Human Serum Samples (n = 3).

Sample Added, µM Found, µM RSD Recovery, %

Male serum

15 14.8 4.2 98.6

30 29.5 3.6 98.3

45 46.3 5.0 102.8

Female serum

15 15.6 4.5 104.0

30 28.9 5.2 96.3

45 44.2 3.9 98.2

Funding/Support: This work is not funded by any univer-
sity or company.
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