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Abstract

Background: Highly sensitive and rapid monitoring of heavy metal ions such as lead and cadmium has attracted considerable
interest in analytical chemistry due to serious environmental effects of these ions.
Objectives: In this work, clay/carbon nanocomposite modified with an organic ligand was applied as a novel modifier for simulta-
neous measurement of Pb (II) and Cd (II) in water samples.
Methods: The characterization of the modifier was studied by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction
(XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. The analytical performance of the
method was investigated by the differential pulse anodic stripping voltammetric (DPASV) technique using a carbon paste electrode
(CPE) modified with the prepared nanocomposite.
Results: Under the selected optimized conditions, a linear voltammetric response in the range of 2.0 - 100.0 ppb was obtained for
the both analyte ions. The calculated detection limits (S/N = 3) were found to be 1.1 ppb for Pb (II) and 0.7 ppb for Cd (II), which are
below the World Health Organization (WHO) guideline values for lead and cadmium in drinking water. The method was successfully
applied for determination of noxious Pb (II) and Cd (II) ions in real waters with acceptable recoveries for the spiked samples.
Conclusions: A simple, selective and sensitive electrochemical sensor was prepared and applied for simultaneous detection of Pb
(II) and Cd (II). The suggested sensor demonstrated good electrochemical performance and anti-interference capability for electro-
chemical detection of these ions in real water samples using the DPASV method.
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1. Background

Nowadays, there is an increasing demand to monitor
heavy metal ions such as lead and cadmium due to their
serious environmental impact (1). The World Health Or-
ganization (WHO) has set action levels for lead and cad-
mium in domestic water at 3 and 10 ppb, respectively
(2). Therefore, it is highly important to develop sensi-
tive and rapid monitoring techniques for detection of Pb
(II) and Cd (II) in water samples. So far, different analyti-
cal protocols have been developed for sensing heavy met-
als such as flame atomic absorption spectrometry (FAAS)
(3), graphite furnace atomic absorptions spectrometry (GF-
AAS) (4), inductively coupled plasma optical emission spec-
trometry (ICP-OES) (5), inductively coupled plasma mass
spectrometry (ICP-MS) (6) and fluorescence spectrometry
(7). However, these methods require high implementa-

tion and maintenance costs as compared to different elec-
trochemical methods for sensing Pb (II) and Cd (II) (8-10).
The performance of electrochemical sensors depends on
electrode modifiers (11). Among various modifiers, car-
bon nanostructures such as graphene (Gr) and carbon nan-
otube (CNT) have been employed for fabrication of electro-
chemical sensors in heavy metals (12, 13). However, applica-
tion of Gr and CNT based modifiers is unfavorable from the
economic point of view (14).

Sepiolite is a fibrous clay mineral with a unit cell for-
mula of Si12Mg8O30(OH)4(OH2)4·8H2O (15). This clay mate-
rial has lower cost compared to other commercial nanos-
tructures and can be mined from the corresponding de-
posit as a raw mineral. However, sepiolite is not effective
for electrochemical sensing applications due to its non-
conductive property. Incorporation of carbon into clay ma-
terial can be an effective way to improve the conductivity

Copyright © 2019, Annals of Military and Health Sciences Research. This is an open-access article distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in
noncommercial usages, provided the original work is properly cited.

http://ajaums.com
http://dx.doi.org/10.5812/amh.99082
https://crossmark.crossref.org/dialog/?doi=10.5812/amh.99082&domain=pdf
https://orcid.org/0000-0002-7438-1972


Sheikh Arabi M et al.

of natural clay materials (16). Moreover, surface modifica-
tion of carbon substrate with organic ligands has been rec-
ognized as a potential strategy to improve the selectivity
of modifiers in electroanalytical detection of heavy metals
(17, 18).

2. Objectives

In this paper, clay/carbon nanocomposite was de-
signed and used as substrate for preparation of a new elec-
trode modifier. To improve the selectivity of the modifier,
the prepared clay/carbon nanocomposite was modified
with 3-[2-(2-aminoethylamino)ethylamino]propyl-trime
thoxysilane (AAAPTS), as shown in Figure 1. The electro-
chemical properties of the clay-based modifier were inves-
tigated in detail. The prepared sensor showed remarkable
sensitivity and good selectivity toward detection of Pb (II)
and Cd (II) in water samples.

Figure 1. The schematic illustration of the modifier preparation

3. Methods

3.1. Materials and Apparatus

Sepiolite was obtained from a sepiolite mine (Fari-
man, Iran) with a particle size of ≤ 0.075 mm. Glucose,
AAAPTS, graphite powder and silicon oil were obtained
from Merck. Cd (II) and Pb (II) standard solutions (1000
ppm) were prepared by dissolving desired amounts of
Cd(NO3)2·4H2O and Pb(NO3)2·4H2O (both from Merck), re-
spectively, in deionized water. All other reagents were
of analytical grade and were supplied from Merck. The
supporting electrolyte employed in this work was acetate
buffer (HAc-NaAc, 0.1 M), which was prepared throughout
mixing solutions of acetic acid and sodium acetate.

All electrochemical data were acquired using a
Metrohm computrace electroanalyzer Model 757 VA

(Herisau, Switzerland). FT-IR spectra were recorded in
the range of 400-4000 cm-1 on a PerkinElmer Spectrum
2000 FT-IR spectrometer (Norwalk, CT, USA) using the
standard KBr disk method. Scanning electron microscopy
(SEM) and the energy-dispersive X-ray (EDX) spectroscopy
analysis were performed on a CARL ZEISS-AURIGA 60 mi-
croscope (Jena, Germany). The XRD pattern was recorded
via a PANalytical Empyrean X-ray diffractometer (Almelo,
Netherlands).

3.2. Preparation of Modifier

Clay/carbon nanocomposite was prepared by the hy-
drothermal method. For this purpose, 0.5 g of clay ma-
terial was dispersed in 75 mL of deionized water by soni-
cation. Then, 3.5 g of glucose was added and dissolved in
the above suspension. The mixture was transferred into
a Teflon-lined autoclave (100 mL capacity) and heated at
180ºC for 6 h. The obtained brown precipitate was first
washed with distilled water and then dried at 70ºC for 24
h. In the next step, the product was heated at 650ºC for 3
h under N2 condition to improve the degree of carboniza-
tion.

The modification of clay/carbon nanocomposite with
AAAPTS ligand was carried out by a simple reflux method.
Briefly, 0.5 g of clay/carbon nanocomposite was suspended
in 50 mL of toluene and then 3 mL of AAAPTS was added
to the suspension. The mixture was refluxed at 75ºC
overnight. The prepared product, as the modifier, was sep-
arated and repeatedly washed with toluene and ethanol.
Finally, the resulting clay/carbon/AAAPTS nanocomposite
was dried at room temperature.

3.3. Electrode Fabrication

The modified CPE was fabricated according to the lit-
erature methods (19, 20). Briefly, appropriate amounts
of graphite powder (57.5% - 70% w/w), clay/carbon/AAAPTS
nanocomposite (0% - 12.5% w/w) and silicone oil (30% w/w)
were mixed using a mortar and pestle. Then, a portion of
the achieved paste was packed into a Teflon tube (with a 2
mm inner diameter and a 10 cm length) in contact with a
copper wire for electrical connection. The external surface
of the prepared electrode was polished and smoothed on a
paper surface before each electrochemical test.

4. Results

The FT-IR spectrum of the clay/carbon/AAAPTS
nanocomposite is shown in Figure 2. The characteris-
tic peak around 1032 cm-1 was attributed to the plane
vibrations of Si-O-Si groups (21). The bands at 3560 and
1620 cm-1 were related to the stretching and bending
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vibrations of zeolitic water, respectively (22). Moreover,
the band at 693 cm-1 was assigned to the bending vibra-
tion of Mg-O groups (23), and the band at 1467 cm-1 was
ascribed to the stretching of C-N stretching bonds (24).
The absorption band around 2922 cm-1 was due to the C-H
stretching vibration of ethylene groups in AAAPTS (25).

The crystalline structure of the prepared nanocom-
posite was studied by XRD analysis. As shown in Figure
3, the diffraction peaks at 2θ = 7.3º (110), 12.2º (130), 19.9°
(060), 20.7º (131), 26.5º (080), 35.1º (441) and 40.2º (541) cor-
responded to the standard pattern of sepiolite (JCPDS card
No. 13-0595) (26). Moreover, no obvious peak was observed
for carbon in the prepared nanocomposite. This may be
due to the amorphous structure of the carbon deposited
on the clay material.

The SEM image of the clay/carbon/AAAPTS nanocom-
posite is illustrated in Figure 4. The clay material obvi-
ously had a fibrous structure. In addition, the EDX spec-
trum revealed the presence of carbon, nitrogen, oxygen,
magnesium and silicon in the prepared nanocomposite.
Based on the above results, it can be concluded that the
clay/carbon/AAAPTS nanocomposite is successfully synthe-
sized.

5. Discussion

The DPASV responses of different electrodes in-
cluding bare CPE, CPE-clay, CPE-clay/carbon and CPE-
clay/carbon/AAAPTS in buffer solution (pH = 4) containing
25 ppb of Pb (II) and 25 ppb of Cd (II) are shown in Figure
5. As can be observed, the highest sensitivity was obtained
at CPE-clay/carbon/AAAPTS. Therefore, the modified elec-
trode was applied in the present study for simultaneous
measurement of Pb (II) and Cd (II).

To improve the sensitivity of CPE-clay/carbon/AAAPTS
toward detection of Pb (II) and Cd (II), some important
experimental factors such as solution pH and modifier
amount were examined and optimized. The influence
of buffer pH (2.0 - 6.0) on the DPASV responses of CPE-
clay/carbon/AAAPTS is demonstrated in Figure A6. As ob-
served, the peak currents first increased with increasing
the pH value up to 4 and then decreased at higher pH val-
ues. Thus, an optimum pH of 4.0 was selected in the next
electrochemical experiments.

Further, the effect of the clay/carbon/AAAPTS amount
was investigated on the response of the modified elec-
trode. As shown in Figure 6B, the peak responses first
increased with the amount of modifier in the carbon
paste up to 7.5% (mass/mass) and then decreased at higher
modifier content. By taking into account these results,
a carbon-paste composition of 7.5% clay/carbon/AAAPTS,
62.5% graphite powder and 30% (mass/mass) silicon oil

was employed for construction of the chemically modified
electrode.

The calibration plot of CPE-clay/carbon/AAAPTS for Pb
(II) and Cd (II) under optimum conditions is presented in
Figure 7. The linear concentration range of 2.0 - 100.0 ppb
for the both ions was achieved via CPE-clay/carbon/AAAPTS.
The detection limit of the present sensor was found to be
1.1 ppb and 0.7 ppb for Pb (II) and Cd (II), respectively. The
detection limit of the proposed sensor was also compared
with those of some previously reported sensors (27-31) for
analysis of Pb (II) and Cd (II) (Table 1). As can be observed,
the detection limit of the prepared sensor was lower than
the limits of other reported techniques. Moreover, the
present procedure showed good reproducibility with a rel-
ative standard deviation (RSD) values of 4.5% for Cd (II) and
3.8% for Pb (II) at seven individually prepared electrodes in
a solution containing 25 ppb of each ion.

The selectivity of the method was also investigated. Ac-
cording to the experimental results, the analysis of Pb (II)
and Cd (II) (at the concentration of 25 ppb) was not affected
by a 20-fold excess of Ni (II), Co (II), and Mn (II); 10-fold ex-
cess of Hg (II) and Zn (II); and 5-fold excess of Cu (II). Accord-
ingly, CPE-clay/carbon/AAAPTS can be applicable for selec-
tive detection of Pb (II) and Cd (II) in real samples.

The application of CPE-clay/carbon/AAAPTS was investi-
gated for simultaneous determination of Pb (II) and Cd (II)
in tap water, dam water and wastewater samples. The stan-
dard addition method was applied in the recovery tests,
and the acquired results are reported in Table 2. Typical
stripping voltammograms of CPE-clay/carbon/AAAPTS as
well as different concentrations of metal ions in tap water
samples are shown in Appendix 1 in Supplementary File.
It is evident that the suggested electrochemical sensor is
capable of determining the concentration of the both an-
alyte ions in real water samples without any significant in-
terferences and matrix problems. To verify the method ac-
curacy, this procedure was applied for determination of Cd
(II) and Pb (II) in a synthetic sample. The analytical results
are presented in Appendix 2 in Supplementary File. As can
be observed, the obtained results were in good agreement
with the reference values and there was no significant dif-
ferences between the results and the accepted values.

5.1. Conclusions

In this study, a novel electrochemical sensor was intro-
duced for sensitive analysis of cadmium and lead ions in
water resources. Due to the good synergistic integration of
the materials in the clay/carbon/AAAPTS modifier, the sen-
sor showed high sensitivity and good selectivity for anal-
ysis of analyte ions. Under the optimum conditions, the
detection limit of the proposed sensor was 1.1 ppb and 0.7
ppb for Pb (II) and Cd (II), respectively, well below the WHO
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Figure 2. The FT-IR spectrum of the clay/carbon/AAAPTS nanocomposite
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Figure 3. The XRD pattern of the clay/carbon/AAAPTS nanocomposite
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Figure 4. (A) The SEM image and (B) EDX spectrum of the clay/carbon/AAAPTS nanocomposite
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Figure 5. Stripping voltammograms of different electrodes in acetate buffer solution (0.1 M, pH = 4) containing 25 ppb of Pb (II) and 25 ppb of Cd (II). Other conditions:
modifier amount = 7.5 %, accumulation potential = -1.1 V, accumulation time = 240 s.

Table 1. Comparison of CPE-Clay/Carbon/AAAPTS and Other Modified Electrodes for Determination of Pb (II) and Cd (II)

Electrode Modifier Electrode Type
Detection Limit (ppb)

Ref.
Pb (II) Cd (II)

Alkalization-intercalated Ti3C2 GCE 8.5 11.0 (27)

Multiwalled carbon nanotubes GCE 6.6 8.4 (28)

4-Carboxybenzo-18-crown-6 GECE 1.5 2.4 (29)

Bismuth oxide SPE 8 16 (30)

Ammonium tetrafluorobismuthate CPE 1.2 9.8 (31)

Clay/carbon/AAAPTS CPE 1.1 0.7 This work

Abbreviations: CPE, carbon paste electrode; GCE, glassy carbon electrode; GECE, graphite-epoxy composite electrode; SPE, screen-printed electrode
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Figure 6. Voltammetric currents of CPE-clay/carbon/AAAPTS as function of (A) buffer solution pH and (B) the amount of modifier in the carbon paste
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Figure 7. Simultaneous detection of Pb (II) and Cd (II) at various concentrations. The insets show the calibration plots under optimal conditions.
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Table 2. Determination of Pb (II) and Cd (II) in Water Samples (N = 4)

Sample Metal Ion Added (ppb) Found (ppb) Recovery (%) + RSD

1 (Tap water, Gorgan, Iran)

Pb (II)

0 - -

10.0 9.7 97.0 ± 3.4

20.0 20.5 102.5 ± 2.1

Cd (II)

0 - -

10.0 10.3 103.0 ± 2.8

20.0 19.6 98.0 ± 2.3

2 (Urban wastewater, Gorgan, Iran)

Pb (II)

0 6.2 -

10.0 16.4 102.0 ± 4.3

20.0 25.9 98.5 ± 5.4

Cd (II)

0 4.3 -

10.0 14.8 105.0 ± 4.0

20.0 24.6 101.5 ± 4.8

3 (Toshan Dam, Gorgan, Iran)

Pb (II)

0 - -

10.0 10.1 101.0 ± 3.8

20.0 19.7 98.5 ± 4.1

Cd (II)

0 - -

10.0 9.8 98.0 ± 4.6

20.0 20.4 102.0 ± 3.9

guideline. In addition, the electrochemical method indi-
cated good selectivity for measuring analyte ions in pres-
ence of some common interfering species. Finally, the sen-
sor was utilized as a powerful tool for quantification of Pb
(II) and Cd (II) in real water samples.

Supplementary Material

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal web-
site and open PDF/HTML].
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