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Abstract

Context: Current investigations illustrate the increasing prevalence of atherosclerosis (AS) through the aggravating role of inap-
propriate lifestyle patterns. Atherosclerosis is the cause of important vascular-related diseases such as ischemic stroke (IS). Under-
standing AS pathophysiology can help reduce the incidence of AS-mediated diseases like ischemic stroke.
Evidence Acquisition: For this narrative review article, we used the five mega databases of PubMed, Google Scholar, Scopus,
Springer, and Science Direct. We searched from 2010 Jan to 2020 Dec and based on keywords and inclusion criteria, 77 articles were
enrolled.
Results: Based on prior articles on atherosclerosis and ischemic stroke pathophysiology, local and systemic inflammation is a vigor-
ous factor in both diseasesIndeed, the fundamental inflammatory pathway involved atherosclerosis, and ischemic stroke is associ-
ated with the toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor-kappa B (TLR4/ Myd88/ NF-κB) cascade.
The functional paw of these intricate mechanisms are pro-inflammatory mediators, such as interleukin-1 beta (IL-1β), tumor necrosis
factor (TNF-α), and interleukin-18 (IL-18) incite inflammation. Besides, the essential structures termed inflammasomes (multi pro-
teins components), and multiplicity of immune and non-immune cells (i.e., neutrophils, monocytes, platelets, and macrophages)
are beneficial in the induction of inflammatory microenvironment.
Conclusions: Neutrophils could be the most effective cells in the inflammation-based mechanism in IS and AS. It is clarified that
neutrophils with the recruitment of own vesicles and granules can afford to amplify inflammatory conditions and be a key cell in
AS and IS cross-talk. Therefore, utilizing methods to control neutrophils-mediated mechanisms could be an effective method for the
prevention of AS and IS.
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1. Context

Two of the significant challenges in the world include
atherosclerosis and stroke, which are the focus of this
study. Stroke is one of the significant reasons for death and
disability and is divided into ischemic and hemorrhagic
types. Of these, the most common is the ischemic type.
The general mechanism of ischemic stroke (IS) is based on
vascular obstruction and a series of cellular and molecular
events leading to the symptoms and progression of the dis-
ease. Neutrophils, monocytes, macrophages, and platelets
play an important role in this process due to their influ-
ence on cytokine production that appoints an inflamma-
tory environment. Inflammation and its progression can
induce ischemia. There is a continuity cycle between is-
chemia and inflammation that leads to stroke. In this pro-
cess, inflammatory cells are essential members. The details

have been elucidated in former studies (1-14).
Atherosclerosis (AS) is a common vascular disorder

that has a devastating impact on human health and leads
to life-threatening conditions such as stroke, myocardial
infarction, and hypertension. Therefore, AS results in high
mortality and morbidity rates. The main reason for AS is
high-saturated fat diets, but this is not all, and there are cel-
lular and molecular mechanisms that induce AS (2-5, 7, 15-
24). Given the role and importance of cellular and molecu-
lar mechanisms in ischemic stroke and AS, we considered
it necessary to address these mechanisms in our study.

2. Evidence Acquisition

For this narrative article, first we searched the five
mega databases of PubMed, Google Scholar, Scopus,
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Springer, and Science Direct using “Atherosclerosis”,
“Ischemic stroke”, “Neutrophil”, “NeXosome”, and “In-
flammasome” as our selected keywords. We searched for
all related articles from 2010 Jan to 2020 Dec, and overall,
77 articles were ultimately enrolled.

3. Results

3.1. Pathogenesis of Atherosclerosis

The atherosclerotic plaque consists of endothelial
cells, macrophages, and smooth muscle cells of the arter-
ies. The formation of this plaque is due to the disruption
of the fat profile and an increase in the serum level of
apolipoprotein B100 (APO B100). This molecule enters the
sub-endothelial region of the arteries. Among the mech-
anisms involved in this process are the immune system
and pro-inflammatory molecules. In general, the immune
system responds to components that are not in the nor-
mal position. Following the placement of an apo B100 in
the subendothelial region of the arteries, the immune sys-
tem activates and attempts to eliminate these molecules
through cellular and molecular chains. Nevertheless, due
to structural changes in the entering apo B100, the im-
mune system fails, and this initiates a series of molecular
and cellular chains to form and promote the development
of atherosclerotic plaque (Figure 1) (2, 5, 7, 14, 21-37).

3.1.1. Molecular Mechanism of Atherosclerosis

As mentioned above, different molecular mechanisms
are involved in atherosclerosis, and the preliminary one
is apo B100 infiltrating the atherogenic site. Upon the
entrance of apo B100, molecular changes occur during
the oxidation and glycation processes in this component,
preventing its exertion from the region and returning to
the bloodstream. The increased expression of vascular
cell adhesion molecule (VCAM) and intercellular adhesion
molecule (ICAM) on the endothelial cell surface is an es-
sential change in atherosclerosis. These two molecules are
necessary for the migration of inflammatory cells to the
target tissue (24, 26, 27, 32-38).

Another molecular direction is due to the secretion of
macrophage-mediated chemokines such as chemokine (C-
C motif) ligand 3 (CCL3), monocyte chemoattractant pro-
tein (MCP1), and chemokine (C-C motif) ligand 5 (CCL5).
These chemokines bind to monocytes as a ligand and stim-
ulate the entry of these cells into the subendothelium and
apo B100 accumulation site. Since this aggregation is con-
sidered an abnormal phenomenon, it requires to be elimi-
nated. In natural conditions, the removal of abnormal ag-
gregates is the responsibility of macrophages, which oc-
curs as a result of macrophage entry into the tissue (Figure
1). After entering the tissue, macrophages begin to devour

the apo B100 for cleaning. However, because of the reduc-
tion of the C-C chemokine receptor type 7 (CCR7) expres-
sion in these cells, instead of cleaning, foam cell is formed
and remains in the tissue. Also, the foam cell-secreted CCL3
factor by connecting to its particular receptor on the neu-
trophil surface can afford margination and migration into
the atherosclerotic plaque site (22, 24, 26, 27, 32-39).

Due to the presence of these immune cells in the tar-
get tissue, an inflammatory microenvironment is created
that initiates an inflammatory cascade. One of the early
and essential members of the TLR4/MyD88/NF-κB chain is
the expression of TLR4, which ultimately results in MyD88
activation that stimulates the NF-κB pathway. Due to this
pathway, inflammatory factors such as IL-1β, TNF-α, and
IL-18 are produced and result in inflammasome produc-
tion. Inflammasomes are composed of multiprotein com-
ponents that have a proven role in the inflammatory re-
sponse. One of the imperative members is the NOD-like
receptor family, pyrin domain containing 3 (NLRP3) that
is implicated in inducing inflammation by increasing the
transcription of pro-inflammatory cytokines, such as pro-
IL-1β, TNF-α, and pro-IL-18, and converting pro-caspase-1 to
the active form. Caspase-1 can activate pro-IL-1β and pro-
IL-18 during proteolysis (22, 26, 27, 33, 39-45). Another im-
perative factor in NLRP3 activation is through the direct ef-
fect of cholesterol crystals on inflammasomes that follow
a similar pathway as indirect activation of this inflamma-
tory component. These sets of mechanisms induce an in-
flammatory condition in the target tissue (22, 25-29, 40, 46-
48).

Also, complement proteins are critical in AS. The mech-
anism involved is the increased expression of complement
receptors and complement activators (C1q, C3) by damaged
cells present in the ischemic lesion (49-53). These com-
ponents can act both directly and indirectly. In the di-
rect method, they motivate phagocytosis by cell lysis, while
in the indirect method, the expression of adhesion and
chemotactic molecules is increased, resulting in the activa-
tion of leukocytes such as neutrophils. Overall, they aggra-
vate the cellular locomotion to the ischemic site and fur-
ther promote inflammation (Figure 2) (49-55).

3.1.2. The Cellular Mechanism in Atherosclerosis

As mentioned before, a cellular complex is implicated
in atherosclerosis pathophysiology, which is described in
detail below.

3.1.2.1. The Role of Neutrophils

Neutrophils are crucial polymorphonuclear granulo-
cytes in host defense that rise in ischemic stroke and
are associated with disease prognosis (1). These are
hematopoietic-derived immune cells with multiple phe-
notypes (N0, N1, and N2) in different tissues with diverse
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Figure 1. A and C, vascular cell adhesion molecule (VCAM) and intercellular adhesion molecule (ICAM) expression on the endothelial cell surface is an essential change
in atherosclerosis. These two molecules are necessary for the migration of inflammatory cells to the target tissue. Another molecular direction is due to the secretion of
macrophage-mediated chemokines such as chemokine (C-C motif) ligand 3 (CCL3), monocyte chemoattractant protein (MCP1), and chemokine (C-C motif) ligand 5 (CCL5).
These chemokines bind to monocytes as a ligand and stimulate these cells’ entry into the subendothelium and the apo B100 accumulation site. Binding of CD18 on NMVs
to ICAM-1 on epithelial cells results in neutrophil microvesicles activation and function. Leukocytes extravasation into the ischemic region increases through the enhanced
expression of ICAM-1, VCAM-1, and CCL2 in epithelial cells; B, after entering the tissue, macrophages begin to devour apo B100 for cleaning. The reduction of the C-C chemokine
receptor type 7 (CCR7) expression in these cells causes foam cell formation.

pathologic situations, such as cancer, inflammation, infec-
tion, and metabolism. Neutrophils are rarely found in le-
sions, and most of their efficacy is via their granules and
vesicles. These cells have a variety of granules that are cat-
egorized into the four general groups of azurophilic gran-
ules, specific granules, gelatinase granules, and secretory
vesicles (1, 7, 13, 15, 21, 56-61). Each of these has a particular
function in terms of their contents.

One of the mentioned types is secretory vesicles that
are essential for atherosclerosis and stroke (7, 21, 59-63).
Also, neutrophils release specific components called mi-
crovesicles containing numerous substances that can in-
fluence the environment and other cells. It can the
immune system regulation and inflammatory responses
such as cell stimulation, induction of protein transfer, and
presenting peptide antigens (1, 7, 21, 56, 58-60, 62-64). Other
types of neutrophil vesicles include nano-vesicles named
exosomes or NeXosomes.

NeXosomes have specific proteins related to the ori-

gin tissue. They also have several numbers of standard
components, signal transduction kinases, including heat
shock proteins (HSPs) -27, -70, and -90, adhesion molecules,
such as integrin and tetraspanins (CD9 and CD63), and
members of the endosomal sorting complexes required
for transport (ESCRT) complex. Furthermore, some of
these proteins have a function in signal transduction and
translocation of proteins, mRNA, and microRNA (miRNA)
by binding to adhesion molecules (1, 7, 21, 56-60, 62-
66). Another sort of neutrophilic vesicles is a micro-
vesicle that does most of the neutrophil activity. There-
fore, neutrophils can influence vascular inflammation and
atherosclerotic plaque promotion without entering the
vessel wall (26, 56, 58-60, 62, 63, 66). On the other hand, it
has been found that the amount of microvesicle secretion
is related to diet. In the presence of a high-fat diet, these mi-
crovesicles excrete and attach to atheroprone sites of ves-
sels that afford monocytes to enter. Under these events,
monocytes convert to macrophages, and by ingesting the
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Figure 2. The foam cell-secreted CCL3 factor connects to its particular receptor on the neutrophil surface and affords this cell’s margination and migration into the atheroscle-
rotic plaque site. The TLR4/MyD88/NF-κB chain results in IL-1β, TNF-α, and IL-18 production.

fat content, cholesterol level increases in myeloid cells, re-
sulting in the activation of NLRP3 and an increase in neu-
trophil accumulation (26, 40, 41, 48, 56, 58-64, 67, 68). This
function of neutrophil microvesicles (NMVs) requires their
activation depending on the binding of CD18 on NMVs to
ICAM-1 on epithelial cells.

With respect to the enhanced expression of ICAM-1,
VCAM-1, and CCL2 in epithelial cells, leukocyte extravasa-
tion into the ischemic region will increase. These changes
upturn the expression of miRNAs such as miR-155 in NMVs,
which affect gene expression on epithelial cells. miR-155 re-
duces the expression of Bcl-6. Since Bcl-6 is an inhibitor of
NF-κB, miR-155 enhanced the expression of NF-κB (21, 25-27,
42, 44, 56, 58-60, 63, 65, 66). Meanwhile, NF-κB is a criti-
cal member of the inflammatory pathway in the atheroma
and monocyte extravasation. In the next step, the inflam-
mation at the plaque site is promoted. In general, neu-
trophils have a crucial role in the atherosclerotic inflam-
matory process (25, 26, 42, 44, 58-60, 62).

3.1.2.2. Cross Talk of Platelets, Neutrophils, and Atherosclerosis
As mentioned, another cell type involved in the

atherosclerotic processes is platelets termed immune reg-
ulating cells. The main event involves a set of cells and
molecules interconnected through surface receptors and

inflammatory cytokines. Platelets exert their influence
through molecular mechanisms and pro-inflammatory
pathways stimulation. On the platelet surface, there are
molecules called P-selectin, which are one of the essential
components inducing the platelet’s pro-inflammatory ef-
fect. P-selectin binds to P-selectin glycoprotein-1 (PSGL-1)
on the surface of agranulocytes (monocytes and lympho-
cytes) and neutrophils and initiates the pro-inflammatory
role of platelets in pathways leading to atherosclerosis (1,
26, 53, 56, 62, 69-73).

In neutrophils and monocytes, several cytoplasmic
proteins are involved in the progression of inflamma-
tory pathway present in atherosclerosis, including, Mrp1
and Mrp14. These two proteins function both individu-
ally and as heterodimers. This heterodimer form (Mrp-1 /
Mrp-14) regulates the binding of these cells to the vascu-
lar endothelium by regulating the β2 integrin-mediated
rolling process. They act as endogenous activators of TLR-
4/MyD88/ NF-κB downstream that induce inflammation, as
previously mentioned. With regard to former studies, this
heterodimer is released following integration with acti-
vated monocytes and inflammatory cytokines such as TNF-
α. Another stimulator of the secretion of inflammatory cy-
tokines is the interaction between P-selectin and PSGL-1 in
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neutrophils. An additional known function of platelets is
the release of chemokines called CCL5 that bind to CCR5
on monocytes and amplified platelets entering into the
subendothelial tissue (6, 27, 42, 44, 53, 62, 69-73). Referring
to the above, there is a cross-talk between platelet and neu-
trophils that is critical in the atherosclerosis inflammatory
process.

3.2. Atherosclerosis and Ischemic Stroke

In cooperation with all the mentioned mechanisms,
the atherosclerotic plaque is formed. This plaque can de-
velop in any artery, but the main treatment is related to
large arteries like the carotid that is the central part of the
blood supply to the brain. As the plaque encroaches the
vessel lumen, blood supply becomes limited. Now, there
is a danger of complete obstruction of the vessel via clot
formation. Plaque rupture initiates platelet adhesion and
aggregation on the lesion and the activation of the coagu-
lation cascade that can deprive blood supply in the target
tissue by complete occlusion (2, 22, 23). Then, a sequence
of cellular and molecular reactions contributes to systemic
and focal inflammation. The primary starter of inflamma-
tion in ischemic stroke is the damage-associated molecular
pattern (DAMPs) produced by neuronal and non-neuronal
dead cells present in the brain. These molecular patterns
are based on pattern recognition receptors (PRRs) (20, 23,
25, 26, 74).

Damage-associated molecular patterns are a series of
endogenous molecules involved in the development of the
stroke process and elicit an immune response. On the
other hand, they can activate endothelial cells and increase
the expression of VCAM-1, ICAM-1, and E-selectin, and pro-
mote leukocyte extravasation (20, 25-27, 74). Pattern recog-
nition receptors include TLRs and NOD-like receptor fam-
ily (NLRs), which are innate immune molecules expressed
by microglia, astrocytes, monocytes, macrophages, neu-
trophils, and other cells binding to DAMPS. After bind-
ing, microglia in the injured region are rapidly activated.
Then, a group of hematogenous immune cells invades the
ischemic brain tissue. One of the critical cells are neu-
trophils, and among the different types of neutrophils, the
N2 phenotype is less harmful to ischemic stroke and does
not induce neuronal cell death in comparison with N0 or
N1 phenotypes. Also, the frequency of N2 in the periph-
eral blood flow is a predisposing factor for ischemic stroke
consequences. As previously described, other prominent
parts of the underlying mechanism in ischemic stroke are
PRRs. Some of these PRRs are related to inflammasomes.
Among these components, only a part of them is pivotal in
stroke-induced inflammation, such as NLRP-1, NLRP-3, and
absent in melanoma 2 (AIM2) (1, 20, 25-28, 31, 74, 75). Inflam-
masomes are activated through decreasing pH following

ischemia-induced respiration, ROS, cathepsin, and potas-
sium channels, as described in detail below.

3.2.1. pH Reduction

The block of brain bloodstream evinces metabolism
and converts to anaerobic type. Then, the amount of ATP
produced by mitochondria excessively induces lactic aci-
dosis and decreases pH. After the lack of energy to reabsorb
neurotransmitters at synaptic zones, a neuronal function
is disrupted. On the other hand, pH reduction can enhance
NLRP3 receptors, and enhance the inflammasome effect.
With this interpretation, pH regression can be a trigger of
inflammation and ischemia that contribute to stroke (20,
26-28, 31, 40, 41, 68, 74, 76).

3.2.2. Cathepsin Releases

Cathepsin release following atherosclerotic plaque
rupture is deemed to activate NLRP-3 and NLRP-1.
Interleukin-1β and IL-18 production undergo procaspase-1
downstream function and can subsequently induce an
inflammatory microenvironment (20, 26-28, 31, 74, 76).

3.2.3. Potassium Channel Function

Another process of NLRP3 activation is via potassium
channels embedded in the cell membrane. These channels
usually function as a conduit for potassium ion mobiliza-
tion that induces proportion on both sides of the cell mem-
brane. It is demonstrated that potassium excretion is wors-
ened by ischemia-induced acidosis (20, 26-28, 31, 40, 41, 48,
68). Secondary to all the mechanisms mentioned, NLRP3 is
activated. This functional form contributes to pro-caspase-
1 activation through NF-κB and MAPK pathways. The next
step is converting inactivating precursors of IL-1β and IL-
18 to their mature forms by caspase-1 during the proteoly-
sis process. The release of these mediators leads to an en-
suing systemic inflammation. It indicates a round of suc-
cession between the promotion of inflammation and is-
chemia, which cooperatively induce a sustained destruc-
tive brain cycle (27, 28, 40-42, 44, 68).

4. Conclusions

Atherosclerosis and ischemic stroke are multifactorial
diseases, and various cellular mechanisms are involved in
this pathogenesis, including neutrophils, platelets, mono-
cytes, and macrophages. The function of the mentioned
cells is based on molecules’ application, including inflam-
masomes, cytokines, cell membrane channels, secretory
vesicles, and the TLR4/ Myd88/ NF-κB pathway. The corre-
lation and continuity between these cells and molecules
form the core of the progression of these diseases. On the
other hand, neutrophils play a more fundamental role in
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all the stages of these two diseases. Therefore, it can be con-
cluded that specific targeting of this cell can have a unique
effect on treating these diseases. Indeed, the cells and
mechanisms described above are related to neutrophils.
This study shed light on the importance of the neutrophils’
role in the aggravation of the inflammatory process of
atherosclerosis and ischemic stroke immunopathogene-
sis. Therefore, it is hoped that molecular and cellular inter-
actions can optimize the therapeutic response in ischemic
stroke.
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