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Abstract

Background: Compression of the spinal cord induces alterations in protein expression of neurons and glia cells, which in turn
triggers a cascade of pathophysiologic events. It’s well-documented that activation of inhibitory proteins following spinal cord in-
jury stimulates activation of the RhoA via neurotrophin receptor p75 (p75NTR), which causes promotion of apoptotic cell death and
inhibiting axon outgrowth. Elucidating the underlying factors driving the expressions during sustained compression is important
to develop new therapeutic strategies.
Objectives: To investigate the impact of compression duration on the RhoA, P75, and S100 expression in spinal cord injury model
in rats.
Methods: We investigated the impact of compression duration on the expression of RhoA, p75NTR, and S100β in rats with spinal
cord injury (SCI). Initially, rats were subjected to SCI using an aneurism clip at the T9 vertebrae lamina for 3 sec or 10 min. Sham
group was subjected to laminectomy only. We compared spinal cord histopathology at 3 and 14 days after injury for both short and
prolonged compressive surgery groups. At the respective scarify times points, the rats were sacrificed, and the pathology of the
injury was studied using light microscopy and immunohistochemistry.
Results: We found a greater expression level of p75NTR, S100β, and RhoA in the prolonged compression group compared to
the short compression group. The difference was statistically significant, indicating that earlier decompression can prevent the
progress of secondary injuries due to higher expression levels of p75NTR, S100, and RhoA.
Conclusions: This study demonstrated that early decompression of the spinal cord through the changes in p75NTR, S100β, and
RhoA expression may modulate secondary injury events. Besides, it was found that using different inhibitors, especially for RhoA,
might improve SCI-induced regeneration.
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1. Background

Spinal cord injury (SCI) is a disabling and irreversible
condition that involves both primary and secondary in-
jury mechanisms of damage. The primary mechanism is
a mechanical injury that initiates a cascade of secondary
injury mechanisms (1, 2). Numerous studies reported that
prolonged compression of the spinal cord is associated
with significant physiological, histological, and genetic al-
terations at the cellular level (2, 3). These may be associ-
ated with pathogenic auto-destructive processes such as
hemorrhage, apoptosis, glutamate excitotoxicity, inflam-

matory/immune activation, demyelination, and reactive
gliosis (4). Such alterations, along with inhibitory factors
released by damaged myelin and reactive astrocytes, may
contribute to the death of neurons, oligodendroglial cells,
and inhibition of axon outgrowth (5). The nature and am-
plitude of these alterations depend on the severity of the
initial injury and have an important role in determining
the appropriate interventions (6).

Among the inhibitory factors, RhoA, an intracellular
GTPase, that prevent neuroregeneration in SCI, is consid-
ered as a target to design therapeutic strategies (7). It’s
proved that Rho is a major intracellular effector for axonal
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growth inhibition, mainly through inhibitory molecules
derived from central nervous system (CNS) myelin and re-
active astrocytes (8). Besides, it’s demonstrated that oligo-
dendrocyte myelin-associated glycoprotein (MAG), Nogo,
and chondroitin sulfate proteoglycans (CSPGs) expressed
by reactive astrocytes can activate RhoA, which in turn
causes inhibition of neurite outgrowth from neurons (9).
It has been shown recently that RhoA signaling influences
the inhibition of neurite growth via the p75 neurotrophin
receptor (p75NTR) (10). Indeed, many studies indicated
that p75NTR -null mutant mice (10) are not inhibited by
MAG, and RhoA binding to p75NTR forms part of the raft
receptor complexes that triggers growth inhibition signal-
ing cascade (11).

The p75NTR, which expresses by developing neurons as
well as injured neurons, mediates cell survival or apoptosis
(12). Also, Rho activation can induce apoptosis via p75NTR
(13). The SCI influences the expression level of the neu-
rotrophin receptor, and its level may be higher at the bor-
der between the lesion and intact spinal cord tissue (9, 14).
S100β is a calcium-binding protein produced by the CNS
(15) and the spinal cord. It mostly appears in astrocytes. It is
also produced by Schwann cells in the peripheral nervous
system (PNS), where it regulates the cytoskeletal structure
and cell proliferation (16). S100β has a neurotrophic activ-
ity for neural cells during the development and regenera-
tion activity after injury. S100β also stimulates the expres-
sion level of pro-inflammatory factors and initiates apop-
tosis processes (17). Based on what was mentioned before,
evaluation of SCI severity by identifying related molecules
would be useful for determining potential therapeutic tar-
gets intended to prevent or reduce secondary injuries.

2. Objectives

According to the best knowledge of the authors, no
study has investigated the association between severity of
SCI and expression levels of RhoA, p75NTR, and S100β in
spinal cord injury. The current study aimed to evaluate the
changes in expression levels of RhoA, p75NTR, and S100β
in the short and prolonged compression of the spinal cord
in a compressive model SCI.

3. Methods

3.1. Animals

Adult female Wistar rats weighing 200 ± 280 g were
obtained from an in-house animal facility at Tehran Uni-
versity of Medical Sciences. Scientific procedures and the

welfare of animals were observed following the guideline
developed by the Sina Trauma and Surgery Research Cen-
ter (affiliated to the Tehran University of Medical Sciences
(TUMS)). All animals were housed in groups of four at an
ambient temperature of 22 ± 1°C with a 12-h light and 12-
h dark cycle. The rats were divided into three groups. Six-
teen rats were injured using aneurism clip compression
for 3 seconds (short compression), 16 rats were injured us-
ing aneurysm clip compression for 10 minutes (prolonged
compression), and six rats underwent a sham operation
(only laminectomy).

3.2. Compression Model

The rats were deeply anesthetized by injecting a mix of
ketamine (100 mg/kg) and xylazine (10 mg/kg) intraperi-
toneally. A skin incision was made, fascia and paraverte-
bral muscles were dissected to expose the T9 vertebrae lam-
ina, and the spinal cord was completely compressed over
its diameter by extradural application of a 134g aneurysm
clip (AESCULAP1 MINI-CLIP) at the T9 level for either 3 sec-
onds (short compression) or 10 minutes (prolonged com-
pression). Then, the skin was sutured, 5 ml of saline was
injected subcutaneously, and animals were kept under a
heat lamp to reestablish body temperature. Gentamicin (1
mg/kg) and cefazolin (75 mg/kg) were administered once
daily. Rats that exhibited complete hindlimb paralysis 24
h after injury were excluded from the study (n = 3). An-
imals were monitored for autophagia, and their bladder
was manually expressed.

3.3. Histological Evaluation

At 6 hours, 1 day, 3 days, 7 days, and 14 days after in-
jury, rats were perfused with 4% paraformaldehyde in 0.1
M PBS (pH 7.4) transcardially (3 rats for each time point).
The spinal cords were dissected from 1 cm rostral and 1
cm caudal to injury epicenter (2 cm total length), post-
fixed overnight in 4% paraformaldehyde, and embedded
in paraffin for transverse sectioning. The spinal cords were
sectioned at 5 µm thickness. Tissue sections were stained
with cresyl violet.

3.4. Immunohistochemistry

The sections were deparaffinized, rehydrated, and in-
cubated in blocking solutions (5% normal goat serum, 2%
BSA, and 0.3% Triton X-100 in 0.01 M PBS) at room tempera-
ture for one hour. Then, the sections were incubated with
primary antibodies, including rabbit anti-p75 antibodies
(1:100, Abcam, Cambridge, MA, USA), anti- S100β antibody
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(1 1:100, Abcam, Cambridge, MA, USA), and anti-RhoA an-
tibody (1:100, Abcam, Cambridge, MA, USA), overnight at
4°C in a humidified chamber. After performing 2 washes
in PBS, the sections were incubated in FITC-conjugated
IgG secondary monoclonal antibody (1:100, Abcam, Cam-
bridge, MA, USA) for 1 hour at 37ºC, and the nuclei were
stained by 4′,6-diamidino-2-phenylindole (DAPI) (1:1,000)
solution. Immunostaining was detected under a fluores-
cent microscope. The optical density of fluorescence was
analyzed using ImageJ software.

3.5. Locomotor Functional Testing

Locomotor function after SCI was assessed in an open
field (diameter of 50 cm) for 4 min at a similar time of
day for each testing using Basso, Beattie, and Bresnahan
Locomotor Rating Scale (BBB) (18). Two blinded evaluators
scored hindlimb locomotor function in each animal per
week for 2 weeks after injury. The scale measures a range
of BBB scale, from complete paralysis of the hindlimbs
(Score: 0) to normal walking behavior (score: 21), by assess-
ing hind limb joint movements, stepping, trunk position
and stability, coordination of forelimb and hindlimb, paw
placement, toe clearance, and tail position.

3.6. Statistical Analysis

Data are presented as the mean ± standard error of
the mean (SEM). Statistical analyses were performed with
Graph Pad Prism version 5.0. For multiple comparisons,
the ANOVA test with a post hoc Tukey’s test was used. Statis-
tical significance between the two groups was determined
by Student’s t-test. Statistical significance was considered
when P-value < 0.05.

4. Results

Cresyl violet staining was used to assess spared tissue
and lesion size. The results indicated differences concern-
ing the lesion size in the control group compared with
those of the experimental group (Figure 1). The lesion area
in the injured spinal cord was evaluated using light mi-
croscopy. The lesion areas in the animals injured through
3-second compression were smaller than those in the 10-
minute compression group when assayed at days 3 and
14 after injury. Besides, it was found that the lesion area
was increased at day 14 following compressive injury in all
three groups, but the lesion areas in the severely injured
animals were larger compared to those in the mildly in-
jured animals.

4.1. Effect of Time-Dependent Compression on the Expression of
p75NTR

The extent of the p75NTR expression in cord tissues
injured (induced by 3-second and 10-minute compres-
sion) was evaluated by immunohistochemistry (Figure
2A). P75NTR was significantly overexpressed at the 5 mm
rostral to the injury site in both severities of injury at 3
and 14 days following the injury compared to the sham-
operated animals. Ten-minute compression also caused a
greater expression level of p75NTR at the level of injury
compared to 3-second compression. At 14 days after injury,
a significant difference was found between p75NTR expres-
sion in two injury groups (P < 0.01). However, 3 days after
injury, the difference between the two injury groups was
not statistically significant (Figure 2B).

4.2. The Influence of Time-Dependent Compression on the Ex-
pression of S100β

According to the findings, the SCI increased the expres-
sion level of S100β at 3 and 14 days after injury compared
to the sham-operated animals (Figure 3A). The expression
level after 10-minute compression was higher than those
with 3-second compression. At 14 days, there was a statis-
tically significant difference between S100β expressions in
the two groups (P < 0.01). Three days after decompression,
there was no significant difference between the two mod-
els (Figure 3B).

4.3. The Influence of Time-Dependent Compression on the Ex-
pression of RhoA

RhoA was significantly overexpressed at the 5 mm ros-
tral to the injury site in the 3-second and 10-minute com-
pression models at 3 and 14 days after the injury compared
to the control group. At both 3 and 14 days, there was a sta-
tistically significant difference between the RhoA expres-
sions in the two models (P < 0.01, P < 0.001) (Figure 4A and
B).

4.4. Locomotor Functional Recovery

To assess the locomotor recovery, BBB open field was
performed on the 1, 3, 7, and 14 days (Figure 5). Animals had
no hindlimb movement immediately post-injury (score of
0). After the injury, hind-limb locomotion was decreased
significantly in all animals in both experimental groups
compared to the control group. Spontaneous improve-
ment in locomotor function occurred slightly from 3 days
in the group that received 3-second compression.
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Figure 1. Cavity formation gradually increases over time following spinal cord compression at the 5 mm rostral to the injury site. Light microscopic evaluation of cresyl violet
staining of the spinal cord sections at 3- and 14-days post-SCI shows greater cyst cavity in the 10-minute compression group compared to the 3-second compression group. (scale
bar: 100µm). A: control group, B: 3second- 6hour, C: 3second- 1day, D: 3second- 3day, E; 3second-1week, F: 3second- 2week, G: 10minute-6hour, H: 10minute-1day, I: 10minute-3day,
J: 10minute-1week, K: 10minute- 2week.

5. Discussion

Investigating the effect of compression duration on
the expression changes of molecules that contribute to the
cascade of secondary injury following initial impact can
provide useful information for developing novel clinical
interventions intended to treat the dysfunction. Primary
injury to the spinal cord stimulates a series of downstream
cellular responses, which leads to a secondary injury that
induces alterations in protein expression of neurons and
other cells (4, 19). The persistent compression or displace-
ment can induce neurological dysfunction by interrupt-
ing the blood flow, secretion of free radicals, inflammation,
and apoptosis (20). The severity of injury affects the grade
of gene expression. It’s well-documented that growth in-
hibitory proteins that release reactive astrocyte and dam-
aged myelin, such as CSPGs and MAG, can suppress axonal
regrowth in cases with SCI (21, 22). Previous studies have
shown that CSPGs and MAG active RhoA in both neurons
and glial cells in a p75NTR dependent manner (23). Several
studies reported that injury to the spinal cord stimulates
the expression of RhoA, p75NTR, and S100, which in turn
triggers apoptosis and inflammatory cascades that leads
to the death of neurons and glial in the spinal cord and in-

hibit axonal regeneration (14, 24-28).

In the present study, a clip impact-compression model
of SCI was used to evaluate the effect of duration of com-
pression on the expression of RhoA, p75NTR, and S100. At
the 5 mm rostral to the injury site, we found that in pro-
longed compression expression of p75NTR, S100 was signif-
icantly upregulated compared to short compression and
control groups. Based on the findings, p75NTR expression
was upregulated at both days 3 and 14 after short and pro-
longed compression of the spinal cord. Brunello et al.
showed that SCI produces a remarkable and rapid increase
in p75NTR mRNA in the tissue close to the injury site (24).
Montazeri et al. reported temporal and spatial patterns of
alteration in p75NTR expression levels following SCI. They
showed that p75NTR expression begun six hours after SCI,
and its increase continued to seven days and then reduced
to 10 days after injury. Alterations in the expression level of
p75NTR in the spinal cord damage following injury play a
pivotal role in apoptotic cell death (29). In another study,
which used a spinal cord compression model, Casha et
al. demonstrated enhancement of p75NTR expression in
oligodendrocytes, microglia, and astrocytes following SCI
(30). Also, a study, which used a contusion model, showed
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Figure 2. Immunohistochemical staining of p75NTR protein following 3-second and 10-minute compression at the 5 mm rostral to the injury site. A) Immunostaining for p75
revealed various amounts in the spinal cord sections of T9 in the different groups at 3- and 14-days post-SCI. p75-positive cells are stained green, while the nuclei are stained
with DAPI (blue) (20×magnification) (scale bar: 20 µm). B) Comparison of p75NTR expression changes at the 5 mm rostral to the injury site. The staining intensity in the 10-
minute compression group is higher than in the 3-second compression group after 14 days and the control group. Data are expressed as the mean± SEM. Analysis of variance
was used for statistical analysis (n = 3). ** P < 0.01.

that spinal cord damage resulted in a significant increase
of S100β immunoreactive area at 72 hours, 1 week, and 3
weeks (26).

RhoA expression was also upregulated in 10-minute
and 3-second compression models of SCI at 3 and 14 days
compared to the control group. The prolonged compres-
sion induces a further increase in RhoA expression. There
was a significant difference in the RhoA expression at 3 and
14 days in the 10-minute and 3-second compression model.
Both RhoA mRNA and RhoA are significantly higher in neu-
rons and glial cells after SCI near the injury site compared
to the normal control spinal cord (13). The increased RhoA

expression in the neurons and glial cells has important
roles in inhibiting neural regeneration in the first week af-
ter SCI (31). In this study, histologic evaluation of the spinal
cord of rats demonstrated similar specific changes with
our previous studies, that increasing duration of compres-
sion can intensify the damage volume and cavitation area
that correlated with the BBB locomotor scores (32).

Some studies reported that prolonged compression
worsens neurological recovery and early decompression
improves functional recovery (33). Earlier surgical decom-
pression is an important concern in achieving better neu-
rological outcomes following traumatic SCI. Besides, it
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Figure 3. Immunohistochemical staining of S100β protein following 3-second and 10-minute compression at the 5 mm rostral to the injury site. A) Immunostaining for
S100β revealed various amounts in the spinal cord sections of T9 in the different groups at 3- and 14-days post-SCI. S100β-positive cells are stained green, while the nuclei are
stained with DAPI (blue) (20×magnification) (scale bar: 20 µm). B) Comparison of S100 expression changes at the 5 mm rostral to the injury site. The staining intensity in
the 10-minute compression group is higher than in the 3-second compression group after 14 days and the control group. Data are expressed as the mean± SEM. Analysis of
variance was used for statistical analysis (n = 3). ** P < 0.01.

also dampens secondary injury mechanisms (2, 3). These
findings are in agreement with our previous studies that
subjects with 3-second spinal cord compression had bet-
ter final neurological recovery and experienced decreased
lesion volumes compared to the 10-minute compression
group (34). Dolan et al. used a clip compression injury
model at C7-T1 to investigate the effect of time until de-
compression, ranging from 15 to 240 minutes. They found
prompt relief of persistent compression was associated
with improved neurological recovery after different com-
pression forces (35). Besides, it was associated with lower
levels of edema, less myelin and axon damage, and more

myelin regeneration in rats in the 3-second compression
group compared to the 10-minute compression group (36).

5.1. Conclusion

In conclusion, this study demonstrated that prolonged
compression of the spinal cord could induce changes in
RhoA, p75, and S100 expression, which were significantly
different from changes that usually occur after short com-
pression. The results suggest that increasing RhoA, p75,
and S100 expression during the compression of the spinal
cord plays an important role in the molecular cascade of
secondary injury. In other words, these results show that
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Figure 4. Immunohistochemical staining of RhoA protein following 3-second and 10-minute compression at the 5 mm rostral to the injury site. A) Immunostaining for RhoA
revealed various amounts in the spinal cord sections of T9 in the different groups at 3- and 14-days post-SCI. RhoA-positive cells are stained green, while the nuclei are stained
with DAPI (blue) (20×magnification) (scale bar: 20 µm). B) Comparison of RhoA expression changes at the 5 mm rostral to the injury site. The staining intensity in the
10-minute compression group is higher than in the 3-second compression group after both 3 days and 14 days and the control group. Data are expressed as the mean± SEM.
Analysis of variance was used for statistical analysis (n = 3). ** P < 0.01, *** P < 0.001.

early decompression of the spinal cord may modulate sec-
ondary injury events by causing changes in RhoA, p75NTR,
and S100β expression. The current study had limitations,
such as not performing a cresyl violet staining or immuno-
histochemical of the tissues in the epicenter of the injured
area, which probably has affected verification of the effi-
cacy of the spinal cord models.
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