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Abstract

Background: Despite extensive research, the exact molecular mechanisms underlying migraine development and especially its
progression and transformation from episodic into chronic is still unknown.
Objectives: This study aimed to assess the role of somatosensory cortex and hippocampal transient receptor potential vanilloid 1
(TRPV1) in migraine in a rat model.
Methods: This study was an intervention study. Adult male Wistar rats were divided into three groups, including sham, episodic
migraine (EM), and chronic migraine (CM). The sham group received normal intraperitoneal (IP) saline injections every two days
for 11 days, and the EM group received a single dose of trinitroglycerin (TNG) injection (IP; 10 mg/kg). For the CM group, TNG was
administrated every two days (on days 3, 5, 7, 9, and 11; IP; 10 mg/kg). TRPV1 levels in plasma, somatosensory cortex, and hippocampus
were detected with an enzyme-linked immunosorbent assay (ELISA) kit.
Results: The findings showed that in both CM and EM groups the TRPV1 levels in plasma (P < 0.001 in both groups), somatosensory
cortex (P < 0.05 and P < 0.001, respectively), and hippocampus (P < 0.01 in both groups) increased after migraine induction. Inter-
estingly, in the somatosensory cortex, this TRPV1 elevation in the CM group was much greater than the EM group, and a significant
difference was observed between the two groups (P < 0.05).
Conclusions: Our results suggested that headache severity and frequency may enhance concomitant with the upregulation of
somatosensory cortex TRPV1. This new achievement can help to develop new drug approaches to prevent CM.
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1. Background

Migraine is one of the most common debilitating neu-
rological disorders (1, 2). It is known as the recurrent
headaches lasting for 4-72 hours. Headaches are usually
felt in half of the head and are pulsating in nature. A
progressive increase in migraine headaches can yield al-
most permanent pain that may last for at least 15 days per
month. This condition is known as the transformed or
chronic migraine (CM) (3). People with severe episodic mi-
graine (EM) and CM have an extremely impaired quality of
life, suffer from an immense disability, and impose a large
financial burden on the country (1, 4). Up to 1/3 of migraine
patients experience aura, which is a transient perceptual

disturbance arising from the cortex (majorly visual cortex)
or brainstem (5, 6).

The precise mechanisms underlying the pathophysiol-
ogy of migraine are not well known yet. The complex in-
teraction between hormones, neurotransmitters, and in-
flammatory pathways seems to drive the pathogenesis of
migraine (7, 8). Traditional medications for migraine at-
tacks are limited to analgesics (alone or in combination
with caffeine), vasoconstrictors, and alpha adrenoreceptor
antagonists such as ergotamine, and triptans (9). Some re-
cent investigations focused on other therapeutic strategies
such as modulation of the GABAA (γ-aminobutyric acid),
serotonin (5-hydroxytryptamine), glutamate, CGRP (calci-
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tonin gene-related peptide), and nNOS (neuronal nitric
oxide synthesis) receptors for migraine treatment. These
medications have been beneficial for both acute and pre-
ventive therapies (10-16).

Patients with CM are less responsive to these treat-
ments (17, 18). It seems that to find new approaches in the
treatment of CM, it is necessary to understand the molecu-
lar mechanisms involved in CM. Inappropriate treatment,
overuse medication for acute migraine, obesity, chronic
stress, and depression are the main risk factors for mi-
graine transformation (19, 20). However, identifying the
molecular factors that contribute to the change from EM
to CM has received less attention and should be seen as a
priority in migraine studies.

Transient receptor potential vanilloid 1 (TRPV1) that be-
longs to the TRP family of cation channels is permeable
to Ca2+ and gated by capsaicin, harmful heat (> 43°C),
protons, reactive oxygen species (ROS), and inflammatory
agents (21-24). TRPV1 is an important mediator for periph-
eral and central sensitization and promotes hyperalgesia
and allodynia. In this regard, TRPV1 is also likely to be in-
volved in migraine pathophysiology (25, 26), importantly
in pain generation and aura sensitization.

2. Objectives

The undefined pathways that trigger the transforma-
tion of EM to CM motivated us to investigate the alter-
ation level of TRPV1 in the plasma, hippocampus, and so-
matosensory cortex of a rat model and compare these
changes in EM and CM.

3. Methods

3.1. Animals

In this study, we used Wistar rats because of their
anatomical, physiological, and genetic similarity to hu-
mans. A total of 18 healthy adult male Wistar rats with a
weight range of 250 - 300 g were investigated. The animals
were housed in the standard condition (12-h light/dark cy-
cle, 22± 1°C, 45 - 50% humidity) and had free access to food
and water. All experimental procedures were done in ac-
cordance with the guidelines approved by the Institutional
Animal Care and Use Committee of Iran University of Medi-
cal Sciences and confirmed by the ethical committee of the
National Institute for Medical Research Development (NI-
MAD) (ID: IR.NIMAD.REC.1396.054) (Grant no. 957537).

The animals were randomly assigned into three groups
(n = 6 in each group) sham, episodic migraine (EM), and
chronic migraine (CM). As shown in Figure 1, in the sham

group, normal saline injections were administrated in-
traperitoneally (IP) every two days for 11 days. In the EM
group, a single dose of trinitroglycerin (TNG) injection
was administrated (IP; 10 mg/kg). In the CM group, injec-
tions of TNG were administrated every two days (on days
3, 5, 7, 9, and 11; IP; 10 mg/kg) (27). TNG was prepared by
Pohl Boskamp Germany. All injections were done between
10:00 AM and 01:00 PM. After each injection, the animals
were closely monitored by two examiners for symptoms
of headache. Also, for more precise evaluation, the symp-
toms and behaviors were recorded by a video camera. To
confirm pain induction after drug injection, Rat Grimace
Scale (RGS) was used (28). This scale consists of five facial
scales (orbital tightening, nose flattening, cheek flatten-
ing, ear changes, and whisker change) evaluating the rat
behaviors after pain induction. In our study, after 5 min-
utes of TNG injection, signs of headache were observed in
rats, which were similar to the clinical signs of migraine.
These migraine signs peaked 30 minutes after the injec-
tion and lasted for 45 minutes. If an animal did not show
headache symptoms after NTG injection, it was excluded
from the study and replaced with another animal.

3.2. Plasma and Brain Tissue Gathering

After 24 hours of the last injection, the animals were
anesthetized deeply with chloral hydrate (Sigma-Aldrich,
350 mg/kg, IP). Then, 2 mL of blood sample was drawn
from the heart and collected in tubes coated with EDTA
7.5%. Samples were centrifuged for 15 minutes at 4000 rpm
and 4°C. Next, their isolated plasma was stored at -80°C. Fi-
nally, the animal brains were removed manually, and the
somatosensory cortex and hippocampus were dissected
and stored at -80°C.

3.3. Assessments of TRPV1 Levels

The levels of TRPV1 in the plasma, as well as hippocam-
pal and cortical tissues, were detected with an ELISA kit
(Bioassay Technology Laboratory; E1568Ra) following the
manufacturer’s instructions. The tissue samples were ho-
mogenized by adding 1 mL of PBS (PH 7.4) and then the su-
pernatants were collected. A standard curve for the TRPV1
protein was constructed by plotting the mean absorbance
(y-axis) versus the protein concentration (x-axis). Accord-
ing to the absorbance value of samples, the protein con-
centrations were calculated by linear regression of the
standard curve.

3.4. Statistical Analysis

The data was presented as mean ± standard error. Sta-
tistical analysis was done using one-way analysis of vari-
ance (ANOVA) followed by Tukey’s post-hoc test. Data anal-
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Figure 1. Schematic representation of the experimental procedures (n = 6 in each group).

ysis was performed using the SPSS software version 20. P-
value < 0.05 was considered as significant.

4. Results

4.1. The Plasma Level of TRPV1

The mean plasma TRPV1 level (pg/mL) was presented in
Figure 2. The plasma level of TRPV1 significantly increased
in the EM and CM groups compared to the sham group (315
± 9.04 & 313.14 ± 7.7 vs. 261.33± 10.1; P < 0.001 & P < 0.001
in both models).

Figure 2. The bar graphs indicate the mean level of TRPV1 in the plasma. There was a
significant increase in the TRPV1 level in the plasma of EM and CM groups compared
to the sham group, *** (P < 0.001).

4.2. Cortical and Hippocampal Level of TRPV1

The results of hippocampal analysis showed that TRPV1
level (pg/mL) in this area increased in both EM and CM
groups compared with the sham group (585.99± 30.11 and
573.27 ± 40.45 vs. 349.6 ± 12.98; P < 0.01 in both models),
and the rate of this increase in both EM and CM groups

was nearly the same. Also, the results of studying the so-
matosensory cortex displayed TRPV1 elevation in both EM
and CM groups compared with the sham group (710.74 ±
10.2 and 1046.39 ± 17.25 vs. 545.73 ± 36; P < 0.05 & P <
0.001, respectively). Moreover, the post-test analysis re-
vealed that TRPV1 enhancement in CM was much greater
than in the EM, and a significant difference between the
two conditions was observed (1046.39 ± 17.25 vs. 710.74 ±
10.2, P < 0.05) (Figure 3).

5. Discussion

In this study, we investigated the alteration level of
TRPV1 in the plasma, hippocampus, and somatosensory
cortex of a rat model. The new aspect of this study was that
the detection of the TRPV1 highlighted the EM to CM trans-
formation.

Choosing the best animal model of a specific condition
can result in valid and reliable findings that provide strong
indications for human studies. In this study, we used the
TNG model to carry out our research project. Today, TNG
is known as the best animal model for migraine, which
is highly similar to migraine patients in terms of clinical
signs and symptoms (27).

Our findings showed that plasma TRPV1 level increased
in EM and CM groups compared to the sham group, and the
rate of this increase was nearly the same in both groups.
Also, no significant difference was observed in the levels
of TRPV1 in the CM group compared to the EM. Moreover,
in the hippocampus, the same pattern of increase was ob-
served in the TRPV1 in both EM and CM groups compared
to the sham group; however, no remarkable difference
was observed between the two migraine models. Interest-
ingly, the results of the study in the somatosensory cor-
tex showed that although in both EM and CM groups, the
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Figure 3. The bar graphs indicating the mean level of TRPV1 (pg/mL) in the cortex and hippocampus. There was a significant increase in the TRPV1 level in the cortex of CM
group compared to the sham and EM groups. Also, there was a significant increase in the TRPV1 levels in the hippocampus of EM and CM groups compared to the sham group
(** and *** P < 0.01 and P < 0.001, respectively vs. the sham group) (# P < 0.05 vs. the EM group).

TRPV1 level increased compared to the sham group, this
increase in the CM group was much greater than the EM,
and a significant difference was observed between the two
groups in this regard (P < 0.05).

According to the existing clinical evidence, an ongoing
increase in headache attack frequency occurs in some pa-
tients with EM, which leads to CM. This state is often re-
ferred to as migraine transformation. Several risk factors
for this progression are known, including age, socioeco-
nomic status, genetic factors, obesity, barbiturates, opiates
and caffeine overuse, stressful life events, and inflamma-
tion (19, 29). It is noteworthy that EM is transformed to CM
more commonly in females than males (30).

In previous research, the molecular mechanism under-
lying migraine transformation has not been investigated
efficiently. In a recent study, Yakubova et al. evaluated 46
patients suffering from migraines (27 EM and 19 CM) and
demonstrated that TRPV1 single-nucleotide polymorphism
(SNP) might be one of the effective factors for the pro-
gression of migraine from episodic to chronic form (31).
Their results indicated that TRPV1 1911A>G SNP genotype is
more frequent in CM patients than in patients with EM and
healthy controls.

TRPV1 is broadly expressed in nociceptive fibers and
has a key role in both pain perception and sensitization
(32). Also, it has a wide distribution in the brain. It presents
in the trigeminal nucleus caudalis, hypothalamus, thala-
mus, cerebral cortex, and several other brain regions (16,
33). TRPV1 activation and CGRP (calcitonin gene-related

peptide) release in the trigeminovascular system causes
neurogenic vasodilation, that has an important role in mi-
graine development (25). The trigeminovascular system
comprises of nociceptive neurons that arise from trigem-
inal ganglion and innervate the meninges, large cerebral
arteries, and large venous sinuses. The projections from
the trigeminal ganglion converge at the trigeminal nu-
cleus caudalis. Fibers from the trigeminal nucleus cau-
dalis projected to ventroposterior medial nucleus of the
thalamus and from there projected to several cortical ar-
eas, including insular, auditory, visual, and olfactory cor-
tices, as well as somatosensory cortex. These cortical path-
ways are responsible for the many cortically mediated spe-
cific symptoms of migraine (34, 35).

Previous studies have shown that somatosensory cor-
tex is important for the consistency of migraine-induced
changes. Several studies indicated structural and func-
tional alteration of the somatosensory cortex in migraine.
These findings clearly demonstrate that thickening of the
somatosensory cortex is associated with increased dura-
tion and frequency of headaches (36-38). Also, a magne-
toencephalographic study showed hyperexcitability of the
primary somatosensory cortex in migraine, which is asso-
ciated with the frequency of migraine attacks (39). Brain
imaging investigations have reported a direct relationship
between cerebral blood flow rate and the frequency of mi-
graine attacks. Migraine patients are reported to display
bilateral hyper-perfusion in the primary somatosensory
cortex, where the value of blood flow is directly correlated

4 Arch Neurosci. 2022; 9(1):e115709.



Karimzadeh F et al.

to migraine attack frequency (40). To the best of our knowl-
edge, this is the first study to provide evidence that TRPV1
levels are remarkably elevated in the somatosensory cortex
in both EM and CM types. Moreover, our findings showed
a significant elevation of somatosensory TRPV1 level in the
CM compared to the EM and healthy controls. These results
suggest that headache frequency might enhance through
upregulation of somatosensory cortex TRPV1.

Activation of TRPV1 receptors stimulates CGRP release,
which is one of the main mediators of migraine and
gives long-lasting activation of meningeal afferents (31, 41).
Plasma CGRP levels are increased during a migraine attack
(42, 43) and also in the pain-free interval in CM; so, this
peptide is considered as a CM biomarker (44, 45). The so-
matosensory function of CGRP has been implicated in the
development of pain generation and neuronal sensitiza-
tion in migraine (46).

Given that migraine attacks are repeated stressors and
considering the key role of the hippocampus in stress re-
sponse, functional and structural alterations of the hip-
pocampus might be involved in migraine pathophysiol-
ogy. Recently, it was shown that the expression level of
TRPV1 both in the cortex and hippocampus increased in
EM (47). In the present study, we examined the hippocam-
pal TRPV1 alteration in both EM and CM types. The re-
sults of our study showed that after migraine induction,
the amount of hippocampal TRPV1 increased in both EM
and CM compared to the non-migraine rats. However,
comparing the rate of these changes between the EM and
CM groups showed that the rate of this increase was the
same in both conditions. Therefore, although hippocam-
pal TRPV1 can be involved in migraine development, TRPV1
changes in this region do not appear to play any role in
migraine progression. However, our knowledge about
TRPV1 alterations during migraine attacks is still inade-
quate. Mechanisms leading to increased TRPV1 expression
in EM and CM are unclear, and further research in this area
is needed.

In conclusion, we evaluated the TRPV1 level alteration
in the plasma, hippocampus, and somatosensory cortex in
the EM and CM groups using the rat model of migraine
to investigate the possible role of TRPV1 levels in migraine
progression. Our findings showed significantly higher el-
evation of TRPV1 in the CM group than the EM group in
the somatosensory cortex. We discussed that further ele-
vation of TRPV1 in the somatosensory cortex of rat mod-
els of CM compared to EM may indicate that this factor
might contribute to increasing the severity and frequency
of headache attacks in migraine and the progression from
EM to CM. In this regard, paying attention to TRPV1 regula-
tion in different areas of the brain in migraine patients is a
new approach that could lead to the development of a new

class of anti-migraine drugs that are useful in preventing
the occurrence or progression of migraines.
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