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Abstract

Background: Peripheral nerve injuries remain a great challenge for microsurgery despite the significant progress in recent
decades. The current gold standard is autogenous nerve grafting with a success rate as low as 50% in long gaps. Current studies
have focused on finding alternative methods for bridging nerve defects. Previous data have demonstrated the role of human amni-
otic membrane in stimulating neural regeneration. On the other hand, adipose-derived mesenchymal stem cells can differentiate
into all three germ layers and could support nerve repair. The purpose of this study was to compare the role of the human amniotic
membrane with and without adipose tissue stem cells in sciatic nerve injury with gap in rats.
Objectives: We aimed to evaluate the effectiveness of the human amniotic membrane with and without adipose-derived mesenchy-
mal stem cells in sciatic nerve injury with gap in rats.
Methods: Twenty-four male Wistar rats in four random groups were used in our study. In the first group, the nerve gap was re-
paired using the inverse resected nerve segment (Control group), the second group was repaired with a human amniotic membrane
(AM group), the third group was repaired with an amnion sheet with seeded adipose-derived mesenchymal stem cells (AM/ADMSCs
group), and the last group was not repaired, and both stumps were sutured to muscles.
Results: All the animals underwent the procedures and survived without complication. The sciatic function index and hot plate test
results were significantly improved in the AM and AM/ADMSCs groups compared to the Control group (as a gold standard of care)
(P>0.05). Based on histopathology findings, regenerative nerve fibers were seen in the implanted area of both AM and AM/ADMSCs
groups; however, nerve fibers were surrounded by significant fibrosis (scar formation) in the AM/ADMSCs group. The axon count in
the Control group was significantly higher than both experimental groups (P < 0.01).
Conclusions: Our study showed the role of amniotic membrane in the promotion of nerve regeneration in sciatic nerve injury with
a gap, but adding adipose-derived mesenchymal stem cells not only has no extra benefits, but also causes more tissue scar.
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1. Background

Peripheral nerve injuries are common due to trauma,
some diseases, and surgical complications, and their surgi-
cal management remains a significant challenge for clini-
cians (1-4). Annually, millions of people suffer from painful
neuropathies and sensory-motor deficits due to peripheral
nerve injuries (5). Despite numerous advances in clinical
studies and laboratory experiments, peripheral nerve re-
pair, especially in cases with nerve gaps, has a poor out-

come (6-9). Wallerian degeneration (WD) occurs following
peripheral nerve damage. During this process, myelin is re-
moved from axons, and then axons are disintegrated and
destroyed distally toward the site of injury (10-15). In the
regeneration phase, axons begin to regrow from the prox-
imal stump, and the target organ is reinnervated under
ideal circumstances (16, 17). Direct neurorrhaphy is a stan-
dard procedure for nerve injury repair, but it works when
the neural gap is smaller than 5 mm, and nerve stumps can
be sutured without tension. The current gold standard for
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longer gap is autogenous nerve grafting (18-21), with a suc-
cess rate as low as 50%. In addition to the low success rate,
it has some other disadvantages, including inevitable sen-
sory deficit, painful neuroma at the donor site, donor site
scar, prolonged surgical time, and limitation of graft mate-
rial in cases of extensive lesions (e.g., brachial plexus) (18-
20, 22).

Previous studies have shown that neurotrophic factors
influence the nerve regeneration process. Both distal and
proximal stumps of the injured nerve release trophic fac-
tors supporting the growth of dorsal root ganglion. Nerve
ends produce both neurotrophic factors and extracellular
matrix components with contact guidance and hormonal
support to develop and advance axons regeneration. How-
ever, surroundings invade the environment provided by
nerve ends. In fact, inflammatory factors and cells from the
surrounding tissue can cause adverse effects on nerve re-
generation and tissue scar. Therefore, a major concern is
the isolation of the neural gap from the surrounding tis-
sue to provide optimum intrinsic conditions.

Current studies have focused on finding alternative
methods for bridging nerve defects. Previous experiments
have examined venous grafts as well as artificial and natu-
ral conduits (21, 23-32). Today’s methods can support nerve
regeneration; however, they have not consistently repli-
cated the results obtained by autologous nerve transplan-
tation (33). The reason for using conduits is creating a pro-
tective channel through which regeneration can occur in
a more straightforward manner. Ideal conduit materials
for a successful neural regeneration should be biocompat-
ible to cause minimal inflammation and able to stimulate
axonal regeneration. A neural conduit must also have spe-
cific mechanical properties, such as flexibility and com-
fortable handling (34-38).

The human amniotic membrane (hAM) is abundantly
available and easily extracted, being rich in collagen,
laminin, fibronectin, and other basement membrane com-
ponents (39-41). Previous data have demonstrated numer-
ous clinical applications of amniotic membranes. Davis
et al. showed that the hAM could stimulate neural regen-
eration in vivo and in vitro (39). Other studies demon-
strated the hAM’s capability to limit scar formation and ad-
hesions when used as a wrapped conduit around the re-
paired nerve (42). The hAM consists of specific proteins, in-
cluding collagen, laminin, and proteoglycans; therefore, it
is used as a nerve conduit in rat (43, 44) and rabbit models
for nerve repair (42, 45).

Recent studies have concentrated on the utility and ca-
pability of stem cells in peripheral nerve repair. Studies
demonstrated the differentiation ability of bone marrow
stem cells (BMSCs) into numerous cell lineages, includ-
ing neurons, astrocytes, oligodendrocytes, and Schwann

cells (46, 47). Experimental studies have revealed the role
of these cells in improving peripheral nerve function af-
ter repair. Adipose-derived mesenchymal stem cells (ADM-
SCs) are capable of differentiating into functional neurons
(48-50) and can support nerve repair (19). Adipose-derived
mesenchymal stem cells produce large numbers of growth
factors that can promote the development and function of
the peripheral nervous system (50).

2. Objectives

The purpose of this study was to evaluate the effective-
ness of the hAM with and without adipose-derived mes-
enchymal stem cells in sciatic nerve injury with a gap in
rats.

3. Methods

3.1. Animal Experiments

Twenty-four male Wistar rats (200 - 250 gr) were used
for the experiments. They were randomized into four
groups. The study design was approved by Iran National
Committee for Ethics in Biomedical Research (Approval
ID: IR.TUMS.NI.REC.1398.039). All the experimental proce-
dures were carried out under the regulations and ethical
considerations in animal experiments at Tehran University
of Medical Sciences. The animals were kept in a room with
controlled temperature and humidity (20 - 25°C, 70 - 80%,
respectively) and in individual cages. They were exposed to
12 hours of daylight and fed according to the standard pro-
tocols. Twelve hours before surgery, they were only given
access to water. After surgery, they received pain medica-
tions.

3.2. Procedure

The animals were anesthetized using the intraperi-
toneal injection of the mixture of 50 mg/kg ketamine and
5 mg/kg xylazine. The right sciatic nerve was aseptically ex-
plored in mid-thigh, and then an 8-mm nerve segment was
resected above the bifurcation area.

In the first group, the nerve gap was repaired using
the inverse resected nerve segment (Control Group). In
the amnion membrane group (AM group), the distal and
proximal stumps were sutured to the ends of the viable
amnion sheet. Then, the amnion was rolled around both
stumps to form a tube which filled the nerve gap. Finally,
the amnion sheet overlapped with both nerve stumps (Fig-
ure 1). The same procedure was applied in the stem cell
group, except for using an amnion sheet with seeded ADM-
SCs (AM/ADMSCs group). In the last group, the nerve gap
was not repaired (Negative Control).
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Figure 1. Amnion sheet was formed a tube which filled the nerve gap

3.3. Preparation of Denuded Amniotic Membrane (dAM)

Fetal membranes were collected during elective ce-
sarean section after obtaining written informed consent
from healthy donors. All donors were screened with our
donor’s inclusion criteria. The donor’s blood sample was
taken for laboratory tests. They were examined for HIV,
HBV, HCV, HTLV, and venereal diseases. The harvested tis-
sues were washed thoroughly with sterile injectable nor-
mal saline (Samen Pharmaceuticals, Iran), packed in ster-
ile organ bags, and transferred to the processing facility.
Amniotic membrane processing was done according to a
previously published protocol (51). The AM was separated
from the harvested membranes and then washed with
cold DPBS including antibiotic and antimycotic (Biowest,
France) three times. Then, it was spread over a sterile ni-
trocellulose sheet (Whatman, USA) and cut into 3 × 3 cm
portions. We put each piece into a sterile polypropylene
tube (SPL, Korea) and cryopreserved it at -80°C. The tubes
contained 50% V/V DMEM (Biowest, France) and glycerol
(Sigma-Aldrich, USA). At the time of the surgery, the cry-
opreserved AMs were defrosted and washed with DPBS. To
remove the epithelial cell layer, AM pieces were incubated

in 0.05% Trypsin-EDTA (Biowest, France) at 37°C for 30 min.
Then, we removed epithelial cells by a cell scraper (SPL, Ko-
rea) and washed with DPBS. To confirm the decellulariza-
tion process, the control samples were fixed with ice-cold
methanol, stained with hematoxylin, and examined under
microscope (Nikon, Japan).

3.4. ADMSCs seeding on dAM

Cryopreserved ADMSCs (third passage) were prepared
by the Cell Therapy and Regenerative Medicine Research
Center (Tehran, Iran). These cells were manufactured and
fully characterized according to their protocols (52). dAM
pieces were transferred to a non-treated six-well culture
plate (SPL, Korea) immersed in culture media (DMEM +
5% human platelet lysate [PL BioScience GmbH, Germany])
and incubated in a CO2 incubator (37°C, 5% CO2, 98% hu-
midity) for 30 min. Meanwhile, the cryopreserved ADMSCs
were defrosted at 37°C and then washed twice in the cul-
ture media and centrifuged at 200 g/5 minutes, counted,
and re-suspended in fresh culture media at a concentra-
tion of 3 × 104 viable cells/ml. Then, the media were dis-
carded, and the dAMs were washed with DPBS. Adipose-
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derived mesenchymal stem cells were seeded on dAMs.
In each one, we used 3 cc of suspension, and then they
were incubated (37°C, 5% CO2, 98% humidity). Fresh cul-
ture media was added 24 h later. On day 5, the prepared
construct (dAM-ADMSCs) was ready for transplantation.
dAM-ADMSCs and dAMs were kept in polypropylene tubes
with phosphate-buffered saline (PBS). To confirm ADM-
SCs adhesion, representative samples were stained with
hematoxylin. Furthermore, samples of dAM-ADMSCs were
stained with mouse anti-human Vimentin antibody (eBio-
science, Cat.No:14-9897-80). The specimens were fixed in 4%
paraformaldehyde (20 minutes), then they were washed
in PBS-Tween (Atocel, Austria) three times. Permeabilizing
was done using 0.1% Triton X-100 (Atocel, Austria) (10 min-
utes), and finally, they were blocked in 5% goat serum for
1 h. dAM-ADMSCs were incubated in primary antibodies
(anti-human Vimentin antibody and mouse anti-human
IgG1 isotype control [eBioscience, Cat.No: 14-4714-81]) for 1
h at 37°C. To detect reaction, 3,3’ Diaminobenzidine (DAB)
staining kit (Dako, Denmark) was used according to the
manufacturer’s instruction. The stained samples were all
examined under microscope (Nikon, Japan).

3.5. Functional Recovery Evaluation

Walking track patterns were evaluated 4, 8, and 12
weeks after surgery. Footprints were recorded through
walking across a tunnel. Three indices, including distance
between the third toe to the heel (PL), the second finger to
the fourth one (IT), and the first to the fifth finger (TS), were
measured. These measurements were made in both intact
and operated feet. We used the below formula for calculat-
ing the sciatic functional index (SFI) (43).

SFI = −38.3

[
EPL−NPL

NPL

]
+ 109.5

[
ETS −NTS

NTS

]
+ 13.3

[
EITS −NITS

NITS

]
− 8.8

3.6. Withdrawal Reflex Latency Test

Withdrawal reflex latency was measured at the same
follow-up periods (4, 8, 12 weeks after surgery) in all the
groups. It is an experimental method used for assessing
nociception in rats. The rats were placed on a hotplate at
56°C with the affected hind paw. The latency to lick hind
paw or jump out of the enclosure were measured with a
stopwatch. At this point, the animal was removed from the
hot plate.

3.7. Histopathology

In the last follow-up, 12 weeks after surgery, the an-
imals were sacrificed. The sciatic nerve (in graft site)
was removed and fixed in 10% neutral buffered formalin

(NBF, PH. 7.26) for 48 h. The paraffin-embedded specimen
blocks were cut into sections with a 5-µm thickness. Trans-
verse sections of the nerve graft site were stained with
both hematoxylin and eosin (H&E) and toluidine blue (TB).
Then, the histological slides were examined under light
microscopy (Olympus BX51; Olympus, Tokyo, Japan) by a
pathologist (Blind Evaluation).

3.8. Statistical Analysis

Results are reported as the mean ± STD. For compar-
ing the axon counts, we used one-way ANOVA and Tukey’s
post hoc test in GraphPad Prism, version 7. To compare the
SFI index and hot plate test results in different post-surgery
follow-ups, we used One-way Repeated Measures Analysis
test.

4. Results

4.1. dAM Preparation and ADMSCs Seeding

The results of hematoxylin staining demonstrated that
AMs were successfully decellularized using our protocol
(Figure 2A and B). Furthermore, hematoxylin and anti-
Vimentin staining of dAM-MSCSs indicated that ADMSCs
could attach and expand on dAMs (Figure 2B and C).

4.2. Animal Study Results

All the animals underwent the above-mentioned pro-
cedures and survived without any specific complications.

Sciatic functional index values in all the experimental
groups in the three follow-up periods are shown in Figure
3. The results showed that the interventions significantly
affected SFI values in all the groups. The estimated effect
size was 0.93 (P < 0.05, F = 37.2). Table 1 shows SFI mean in
all the groups based on the follow-up time. Four weeks af-
ter the surgery, the AM group had a statistically significant
improvement in the SFI index compared to the Negative
Control (P = 0.02). There was no significant difference be-
tween the other groups in the fourth week of the study (P >
0.05). In the next follow-up assessment, eight weeks after
surgery, the SFI in both AM and Control groups increased
compared to the Negative Control and AM/ADMSCs groups
(-31.08, -32.37 vs. -81.86, -83.62, respectively P < 0.05). Finally,
12 weeks after surgery, the SFI value in the AM, AM/ADMSCs,
and Control groups reached -20.48, -11.52, -12.8, respectively.
There was no significant difference between these groups
in SFI improvement at 12 weeks after surgery (P > 0.05). But
all these three groups had a significantly higher improve-
ment in SFI value at 12 weeks after surgery.
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Figure 2. Hematoxylin staining of intact AM (A), dAM (B), and ADMSCs seeded AM (C). Anti-vimentin immunohistochemistry result of ADMSCs seeded AM (D).

4.3. Hot Plate Test

Hot plate test results in the three follow-up periods are
shown in Figure 4. Interventions significantly affected hot
plate test values in all the groups. The estimated effect size
was 0.99 (P < 0.05, F = 3.7). Hot plate test values in all the
groups based on the follow-up time are presented in Fig-
ure 4. Four weeks after surgery, there was no significant im-
provement in hot plate test in the groups (P < 0.05). In the
second follow-up (8 weeks after surgery), the AM and Con-
trol groups had a significant improvement in hot plate test
results compared to the Negative Control group (Means
9.60, 9.82 vs 11.70, respectively; P < 0.05). Twelve weeks
after surgery, there were statistically significant improve-
ments in hot plate test results of the experimental groups
compared to the Negative Control group (9.70, 9.66, 9.90
vs 11.17, P < 0.05). However, there was no significant differ-
ence among the experimental groups (P > 0.05).

4.4. Histopathological Studies

The macroscopic evaluation of the repaired sciatic
nerve exhibited that there was more scar and adhesion in
the AM/ADMSCs groups (Figure 5).

The arrangement of fibers was disturbed in the Control
group, and the axons were swollen with vacuolation.

In the AM group, regenerating nerve fibers were seen
in the implanted conduit. The implanted conduit was
not distinguishable from the peripheral fibrotic tissues.
The micrographs of the sciatic nerve in the AM/ADMSCs
group showed a close resemblance to AM treatment in
terms of regenerated nerve fibers. However, the nerve
fibers were surrounded by significant fibrosis (scar forma-
tion). Moreover, the implanted conduits induced angio-
genesis, as seen in Figure 6 (magnified windows). The num-
ber of myelinated nerve fibers in the AM and AM/ADMSCs
treatment groups was considerably lower in comparison
to those of the normal and control groups (Table 1).

Overall, the histomorphometric analysis of these treat-
ments revealed that axon counts in the normal and control
groups were significantly higher than those of the experi-
mental groups (P < 0.01). Moreover, this analysis showed
that axon count was considerably higher in the AM treat-
ment group than that of the AM/ADMSCs conduit treat-
ment group (P < 0.01).
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Figure 3. SFI values in the three follow-up periods

Table 1. Histomorphometric Analysis of the Sciatic Nerve 12 Weeks Post-sciatic Nerve Injury

Pairwise Comparisons HSD0.05 = 8.3858, HSD0.01 = 10.7219 Q0.05 = 4.0200, Q0.05 = 5.1399

T1 :T2
a

M1 = 186.38, M2 = 129.03 57.35 Q = 27.49 (P = 0.00000)

T1 :T3

M1 = 186.38, M3 = 50.95 135.43 Q = 64.92 (P = 0.00000)

T1 :T4

M1 = 186.38, M4 = 28.10 158.27 Q = 75.87 (P = 0.00000)

T2 :T3

M2 = 129.03, M3 = 50.95 78.08 Q = 37.43 (P = 0.00000)

T2 :T4

M2 = 129.03, M4 = 28.10 100.92 Q = 48.38 (P = 0.00000)

T3 :T4

M3 = 50.95, M4 = 28.10 22.85 Q = 10.95 (P = 0.00000)

a T1 : Normal, T2 : Control, T3 : AM, T4 : AM/ADMSCs.

5. Discussion

The current study revealed that rat sciatic regeneration
in both experimental groups (AM & AM/ADMSCs) was com-
parable with the Control group (as the gold standard of
care). As the pathological findings showed, nerve fibers

were grown through the nerve gaps. The axons counts in
the experimental groups were less than that of the Con-
trol group. The micrographs of the sciatic nerve in the
AM/ADMSCs group showed a close resemblance to those of
the AM group in terms of regenerated nerve fibers. How-
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Figure 4. Hot plate test results in the three follow-up periods

Figure 5. Macroscopic view of the repaired sciatic nerve 12 weeks after surgery

ever, nerve fibers were surrounded with significant fibrosis
(scar formation).

Using the hAM alone or with seeded-on bone marrow
stromal cells as nerve conduit demonstrated to promote
functional recovery in spinal cord injury (53). The hAM
cells, including human amniotic mesenchymal stromal
cells and human amniotic epithelial cells, have displayed
neurotrophic factors secretion ability, promoting nerve re-
generation (54). These factors consist of neurotrophin-

3, brain-derived neurotrophic factors, nerve growth fac-
tors, ciliary neurotrophic factor, and glial cell-derived neu-
rotrophic factor. In previous studies, the hAM was used
in the acellular form in nerve tissue engineering. How-
ever, recent studies showed that it contains cells with a
high potential to promote nerve regeneration. Banerjee
et al. demonstrated that viable hAM could be differenti-
ated towards the Schwann cell lineage and secrete neu-
rotrophic factors (55). Some studies showed that isola-

Arch Neurosci. 2021; 8(3):e118661. 7



Xaki S et al.

Figure 6. Light micrographs of the sciatic nerve. H&E, TB staining, magnification x40: 300 µm, X400:50 µm. blue arrows: myelinated fibers, thick black arrows: fibrotic
tissues, thin black arrows: vacuolation.

tion of the repaired nerve by using the amnion could pro-
tect the repaired site from external inflammatory events
(43). In some studies, wrapped amnion sheets protected
the neurorrhaphy site from adhesion and promoted func-
tional recovery (45).

In this study, we used the viable form of the hAM
and the acellular one with ADSCs seeding. According to
the functional recovery test, there was no significant dif-
ference between the experimental and Control groups at
the end of the study. Thus, the results indicated that
adding adipose-derived mesenchymal stem cells to the hu-
man amniotic membrane failed to cause any significant
changes in nerve recovery outcome, although it causes fur-
ther fibrosis tissue. This study showed that the hAM could

facilitate nerve regeneration due to its growth factors and
anti-scarring, anti-inflammatory, and low immunogenic-
ity properties.

On the other hand, recent studies have focused on the
role of stem cells in peripheral nerve repair. Kingham et al.
(56) demonstrated that the treatment of adipose-derived
mesenchymal stem cells with a combination of Schwann
cell mitogenic could express the p75 neurotrophic recep-
tor, glial fibrillary acidic protein, and glial cell markers
S100B. Other studies showed positive results regarding the
high quantity of peripheral nerve injuries (57, 58) and re-
vealed that AM/ADMSCs produce numerous growth fac-
tors, which play a key role in the peripheral nervous system
(45).
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In the present study, the improvement of the SFI index
in the AM group was comparable with that of the Control
group at 8 and 12 weeks after surgery. The same result was
reported in Mohammad et al. (2000) study (20). Forootan
et al. (2011) showed that end-to-end anastomosis with am-
niotic membrane coverage had a better improvement in
SFI index compared to the simple end-to-end anastomosis
(59). Thus, their results were in agreement with ours re-
garding the neurosupportive role of the amniotic mem-
brane. In another study, Sadraie et al. showed similar re-
sults (60).

5.1. Conclusions

Our study showed the role of the hAM in the promotion
of nerve regeneration in sciatic nerve injury with a gap, but
adding adipose-derived mesenchymal stem cells not only
had no extra benefit, but also caused more tissue scar.
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