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Dear Editor,
Oxygen (O2) is necessary for the life of most living be-

ings, since it acts in mitochondrial respiration as the fi-
nal acceptor of four electrons, giving rise to two water
molecules and the formation of adenosine triphosphate
(ATP). When O2 reduction is partial, reactive oxygen species
(ROS) and free radicals are generated. O2 captures an elec-
tron, producing the radical anion superoxide (O2

.-), which
gives rise to hydrogen peroxide (H2O2) and to the hydroxyl
radical (OH.) (1-4). ROS production occurs at the subcel-
lular level in the mitochondria, lysosomes, peroxisomes,
nuclear membrane, and in the cytoplasm of various cells,
in which there are sources such as NADPH oxidases (NOX),
a family of enzymes that use NADPH to reduce O2, pro-
ducing O2

.-. Oxidative stress is the imbalance between the
generation of ROS and the antioxidant mechanisms in a
biological system, where the former exceeds the capac-
ity of the antioxidant defenses of said system (5, 6). ROS
interact with molecular structures (DNA, proteins, lipids,
and carbohydrates) leading to alterations in the activity
of metabolic pathways and membranes, causing the accu-
mulation of intracellular aggregates, mitochondrial dys-
function, excitotoxicity, and apoptosis. Oxidative stress is
associated with molecular damage, which results in some
pathologies (cancer, diabetes, and neurodegenerative dis-
eases). Also, the increase in the production of free radicals
promotes the massive entry of Ca2+ into the mitochondria,
which causes the transition pore to form in the inner mi-
tochondrial membrane (MTP), leading to a collapse in the
proton electrochemical potential gradient, causing a de-
crease in ATP levels and an increase in ROS. Decreased ATP
production results in depolarization of the plasma mem-
brane and influx of Ca2+ through various ion channels,

leading to loss of neuronal function and cell death. For
the nervous system (NS), ROS participate in the mainte-
nance of the physiological state since they regulate signal-
ing pathways in processes of survival, development, plas-
ticity, death, and inflammation (7-9). The NS is vulnerable
to oxidative stress due to the high oxygen consumption re-
quired to maintain its high metabolic rate, with the conse-
quent production of large amounts of ROS and a lower ca-
pacity of antioxidant mechanisms compared to other tis-
sues. Oxidative stress is a fundamental factor in various
processes of neuronal death, such as necrosis and apopto-
sis (10, 11). In necrosis, death results from loss of membrane
integrity due to lipid peroxidation, oxidative damage to
DNA and structural proteins (11). Apoptosis is character-
ized not only by loss of mitochondrial membrane poten-
tial and cytochrome C release, but also by protein peroxida-
tion resulting in dysfunction of ATP synthase, dysfunction
of electron transport chain complexes, and decreased con-
centration of antioxidant mechanisms such as glutathione
(12, 13). When the body’s antioxidant defense capacity de-
creases due to the prooxidant action of a virus or bacteria,
ROS increase, causing cellular and systemic damage, giv-
ing rise to oxidative stress itself. Like all RNA viruses, se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) has a cellular prooxidative action that activates the in-
flammatory response secondary to infection through this
pathway, generating ROS that help perpetuate the damage
caused by oxidative stress and loss of the antioxidant regu-
latory system. In coronavirus disease 2019 (COVID-19), the
oxidative stress caused by the increase in ROS participates
in the pathogenesis of the cytokine storm, in the coagula-
tion mechanism, and the exacerbation of hypoxia (14). El-
evated inflammatory and oxidative status can lead to mi-
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tochondrial oxidative stress and dysfunction, which can
contribute to dysbiosis or imbalance in the balance of the
gut microbiota, fueling the inflammatory and oxidative
response (15). The relationship between viruses and ROS
is due to the participation in three classes of viruses: (1)
RNA viruses, (2) DNA viruses, and (3) retroviruses. Respira-
tory viruses, including SARS-CoV-2 (see Figure 1), induce the
formation of ROS or free oxygen radicals in a deregulated
manner. As a result of increased recruitment of inflam-
matory cells at the site of infection, viral infections alter
antioxidant mechanisms, generating a prooxidant action,
which leads to an unbalanced oxidative-antioxidant state
and the consequent oxidative cell damage (16). SARS-Cov-
2, by triggering the viral infection, causes the innate im-
mune system (macrophages, dendrites, and monocytes)
to detect the infection through pattern recognition re-
ceptors (PRRs), receptors that identify intrinsic molecules
present in pathogens. Among the currently known PRRs,
toll-like receptors (TLR) are mainly included, which acti-
vate a prooxidant response of macrophages, which leads
to the activation of the TNF-α and of NADPH-oxidase in
leukocytes, and which in turn mediate the production of
ROS (17). In subjects with COVID-19, the hyperinflammatory
state derived from the cytokine storm promotes iron dys-
regulation that manifests as hyperferritinemia associated
with the severity of the disease and induces the produc-
tion of ROS, and promotes oxidative stress (18). Nitric ox-
ide synthase is an inducible enzyme in neutrophils, which,
when activated, produces free oxygen radicals capable of
combining with nitric oxide to give substances much more
toxic than nitric oxide itself, such as peroxynitrite, thus in-
creasing nitrosative stress. Neutrophilia generates an ex-
cess of ROS that exacerbates the host’s immunopatholog-
ical response, resulting in more severe disease. The high
proportion of neutrophils observed in critically ill patients
with COVID-19 promotes a cascade of biological events that
drives the pathological response and induces tissue dam-
age, thrombosis, and red blood cell dysfunction, contribut-
ing to disease severity. The deleterious action of ROS on
the functions of lung cells such as red blood cells can be
seen as an important contributor to hypoxic respiratory
failure, observed in the most severe cases of COVID-19, be-
ing its damaging effect on alveolar endothelial and epithe-
lial cells, with procoagulative endotheliitis, and excess ROS
(19). The smooth or rough endoplasmic reticulum (ER) is
another generator of ROS. The ER oxidative stress activates
proinflammatory signals and inflammasome formation,
suggesting that ER stress exerts immunogenic effects and
may be activated by excess lipids or proinflammatory cy-
tokines (20-22).

In conclusion, COVID-19 represents an example of a vi-
ral infection associated with a cellular prooxidative action,

infection, inflammation, coagulation with an increase in
ROS, oxidative stress, and loss of the antioxidant system.
It is essential to understand the role of free radicals in
neurodegenerative processes to propose therapeutic ob-
jectives with the intention of delaying or preventing the
progression of damage in neurodegenerative diseases due
to COVID-19.
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Figure 1. Oxidative stress derived from COVID-19 and its possible association with the development of neurodegenerative diseases
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