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Abstract

Sleep is an important factor in memory consolidation and brain health. In addition, sleep disorder is a common complaint among
females in comparison with males. In menopausal females, to relieve sleep disturbances and other menopausal symptoms, hor-
mone therapy may be used. Furthermore, although estrogen had helpful effects on the brain performance, hormone replace-
ment therapy augmented unfavorable cardiovascular and oncological side effects. It is implied that exercise is a powerful non-
pharmacological intervention that can develop the cognitive performances. The current study used the behavioral, physiological,
and molecular evidence supporting these views.
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1. Introduction and Statement of the Problem

Similar to other physiological functions, sleep regula-
tion is carried out by the circadian clock in the hypotha-
lamus. Sleep is characterized by 2 main phases: Non-
rapid-eye movement (NREM) and sleep pursued by rapid-
eye movement (REM) sleep. Sleep plays a vital role in health
and performance. Many people diminish the amount of
sleep time for business or lifestyle reasons in the modern-
ized society. Evidence from experimental researches in hu-
mans indicate that sleep loss (less than 7 to 8 hours of sleep
each night) causes significant impairment in cardiovascu-
lar, immune, endocrine and cognitive performances (1, 2).
The national sleep foundation (NFS) reported that 7 to 8
hours of sleep is necessary for the best cognitive perfor-
mance in adults (3). Other experiments confirmed the ben-
eficial effects of sleep on declarative and non-declarative
memory. It seems that sleep is the main factor in the ac-
quisition and consolidation of memory (4, 5). Therefore,
sleep deprivation (SD) impairs spatial (6, 7), emotional (8),
and working memories (9), and augments anxiety like be-
haviors (10). As a result, hippocampus is very sensitive
to sleep loss (11, 12). Accordingly, sleep deprivation nega-
tively impacts long-term potentiation (12, 13), which is es-
tablished as a form of synaptic plasticity (14, 15). Other
studies demonstrated that generation and preservation
of long-term potentiating (LTP) and spatial learning and
memory are impaired by sleep deprivation. Sleep depri-
vation also decreases trophic factors such as brain derived
neurotrophic factors (BDNF) level in the hippocampus of
male (16) and female (6, 13, 17-19) rats.

It seems that cognitive functions (20), quality, and
pattern of sleep (21) are different in the 2 genders. On
the whole, hormonal factors -particularly estrogen levels-
can change sleep patterns (22). It is also noticeable that
changes in cognitive performance and sleep pattern and
quality are often associated with sex hormones (23, 24).
These findings highlight the importance of sex hormones
in sleep regulation in the menopause period in females
who indicate low levels of circulating estrogen (25) and are
more sensitive to deleterious effects of sleep deficit on cog-
nitive function (26).

Sleep disturbances are more common among females
in comparison with males. Additionally, disturbed sleep
is a more frequent compliant of menopausal and post-
menopausal females (2, 25).

Additionally, regardless of the helpful effects of sex-
ual hormones on the brain health, hormone replacement
therapy has cardiovascular and oncological side effects
(27); there is conspicuous concentration to develop helpful
therapeutic methods to improve deteriorations associated
with sleep deprivation.

The positive effects of physical activity on various phys-
iological systems such as the nervous system and brain
health are well displayed (28). Exercise can enhance cogni-
tive performance and cell proliferation in the hippocam-
pus (29).

Physical activity can develop some forms of synaptic
plasticity such as LTP (28) and this protocol can also in-
crease the level of BDNF (30).

Additionally, exercise can preserve memory impair-
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ments (6) and improve LTP (13) in neurodegenerative dis-
eases and estrogen deprivation periods (31).Other investi-
gations revealed that regular activity can prevent the SD-
induced impairments of cognitive function, synaptic plas-
ticity, and signaling molecules in the hippocampus of male
(16) and female rats (6, 13, 18, 19).

Given the conflicting effects of SD and regular physi-
cal activity on cognitive performances, it is rational to rec-
ommend that preconditioning the brain with regular ex-
ercise could compensate or weaken the harmful effects of
SD on learning and memory. Specifically, this review was
designed to assess the effects of physical exercise on cogni-
tive impairments associated with SD in female rats.

2. Sleep, Memory, and Synaptic Plasticity

Several studies established that sleep had valuable ef-
fects on declarative and procedural memory in various
tasks. During sleep, earlier encoded memory traces are
reactivated and finally consolidated in the neocortex as
a result of certain neuromodulators (eg, neurotransmit-
ters) and cellular processes (eg, gene expression and pro-
tein translation). Several literature support a long-term in-
tegrative or consolidated function for different stages of
sleep in newly obtained information (32, 33).

3. Modified Multiple Platform Paradigm

Sleep deprivation is accomplished by different tech-
niques. One of these methods is modified multiple plat-
form also recognized as the water tank or columns-in-
water or inverted flowerpot model. Even though this
method is well-organized in suppressing about 95% of REM
sleep, it can also intervene with NREM sleep (34). As a re-
sult, the mentioned technique was based on a feature of
REM sleep as muscle atonia (35). However, the fact that ani-
mals are restricted to the single platform introduces isola-
tion stress as a confounding factor. Thereafter, the multiple
platforms method was developed to alleviate movement
restriction and social isolation associated with the single
flowerpot method, thereby allowing the animals to move
among several platforms. Later, the multiple platform
technique was extended into the less disturbing modified
multiple platform process, which allows animals from the
same cage to experience SD together (Figure 1). The novel
modified multiple platform diminishes psychosocial, im-
mobilization, and separation stress as confounders often
observed in the previous flowerpot models (34-36).

4. Sleep Deprivation and Cognitive Disorders

The chronic lack of sleep and sleep disorders became
one of the typical features of the society. An ample body
of evidence confirms a prominent relationship between SD
and memory destruction both in animals and humans in
different paradigms (7, 37, 38). Several experiments estab-
lished the significant correlation between REM sleep and
cognitive performances in male and female animals. An-
imals that experienced SD indicated significant cognitive
impairments in various paradigms such as radial ram wa-
ter maze (16), Morris water maze (MWM) (6, 17, 19), and the
plus-maze discriminative avoidance task (39). The nega-
tive effects of SD on emotional memory of mice were pre-
viously recognized (8). The ability of mice to retain novel
information and consolidate memory was interrupted by
SD (40). Based on the results of previous studies, it seems
that ovariectomized (OVX) female rats are more suscepti-
ble than intact animals to the harmful effects of SD on cog-
nitive functions (6, 13, 18, 19). Additionally, these finding are
compatible with those of human studies indicating that
menopausal females were susceptible to negative effects of
sleep loss (41). However, females in menopause period are
more susceptible to the deleterious effects of poor sleep on
cognitive performances (25, 42).

The results of the studies imply that sex hormones have
strong neuroprotective functions against different neu-
ronal and brain injuries (41, 43, 44), though the mechanism
of occurrence is not completely understood.

Moreover, LTP is impaired after various periods of
SD (13). The negative effect of SD on synaptic plas-
ticity is thought to be a result of the fundamental
harmful alterations in intracellular signaling molecules
and receptors such as NMDA (N-Methyl-D-aspartic acid
or N-Methyl-D-aspartate) and AMPA (α-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid) receptors (9, 45). For ex-
ample, NMDA receptors that are important for the genera-
tion of LTP indicated harmful changes in receptor subunit
formation and modulation after 24 hours of REM-SD (45).
Another study indicated that phosphorylation and mem-
brane trafficking of hippocampal glutamate AMPA recep-
tors, which are critical in initiating synaptic plasticity, im-
paired after 12 hours of SD (9). Molecular studies also show
that 8, 24, and 48 hours of SD can impair the expression
of key signaling molecules and growth factors (eg, MAPK,
CREB, and BDNF) related in LTP and cognitive function in
the hippocampus (16, 46-48). Indeed, the reduced cogni-
tive functions generated by sleep loss and/or business fac-
tors are approved as a dominant popular health and safety
topics with abundant economic and social charges (1).

The results of the current experiment indicated that in-
duction and maintenance of LTP in the hippocampus of
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Figure 1. Multiple Platform Apparatus

all female rats impaired after 72 hours of SD, but ovariec-
tomized group exhibited more deficiency, compared with
the intact female animals; although this difference was in-
significant (13).

Some human studies reported the augmented vulner-
ability of females during menopause to the harmful im-
pacts of sleep deficits on psychological (49) and cognitive
functions and brain health (50). The effects of estrogen
on hippocampal function were further approved by ex-
periments indicating augmented dendritic spine density,
phosphorylation, and levels of NMDA receptor, as well as a
raise in the induction of LTP in the hippocampus of female
rats during pro-estrus period of estrous phase (51, 52). The
estrogen loss was ultimately suggested as the fundamen-
tal candidate for mediating the higher vulnerability of OVX
animals to the negative impacts of sleep deficits on cogni-
tion, brain health, and synaptic plasticity.

Additionally, previous findings also showed that OVX
rats were more sensitive than intact animals to the harm-
ful effect of sleep loss on BDNF levels (18). In the cen-
tral nervous system (CNS), estrogen has widespread and
different interactions with growth factors (53). The puta-
tive estrogen-sensitive response element (ERE) in the BDNF
gene caused many researchers to propose that the reg-
ulation of BDNF expression in the CNS may be achieved
through estrogen. Therefore, BDNF is considered as a main
mediator of estrogen effects on cognitive function and
hippocampal physiology with potential neuroprotective
properties (54).

5. Exercise Recovers Cognitive Impairments in the
Sleep-Deprived Female Rats

Physical exercise is thought to have useful impacts on
cognitive performance. Several documents indicate that
physical exercise can compensate deteriorations associ-
ated with SD in short- and long-term memories in male

(16, 55) and female animals (6, 19). These data suggest that
the helpful effects of regular activity on cognitive deficits
caused by SD may be mediated by BDNF and other signal-
ing molecules in the hippocampus.

Previous results indicated that 72 hours SD can impair
the spatial learning of the OVX rats and spatial memory
of both OVX and intact female animals (6, 56). Therefore,
pre- and post-learning sleep deprivations also disrupt the
short-term and long-term memory in female animals (6,
19). Nevertheless, animals that underwent regular tread-
mill exercise before SD had a recovered function in MWM
test than the sleep-deprived rats. The beneficial effect of
regular exercise was outstanding in OVX rats and the rats
that did exercise before SD indicated an increased acquisi-
tion rate than SD group (6, 19).

It is demonstrated that regular exercise has construc-
tive effects on the cognitive failure associated with ag-
ing (57). Regular activities can also promote cognitive
performance in neurodegenerative diseases such as the
Alzheimer disease (58, 59) and brain ischemia (60).

Although it is implied that physical activity recovers
cognitive distraction in the sleep-deprived animals, at the
same time, the effects of physical activity on cognitive func-
tions is controversial. The results of some studies suggest
that exercise can protect the brain during sleep depriva-
tion or other neurodegenerative diseases (16, 55). However,
some findings indicated that neither intentional nor in-
voluntary exercises developed cognitive performance, and
were not helpful in learning and retention in different hip-
pocampal functions in normal experimental animals (61-
65). Previously, it was indicated that voluntary exercise
can promote the cell propagation in hippocampus and im-
prove spatial navigation and aversive memory problems
in the estrogen-deprived animals (29). These incompatible
data may be due to some differences such as length and
time of exercise training, and type and intensity of the ex-
periment used. In addition, such different findings may be
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due to the diversity in age and strain of the examined ani-
mals.

6. Exercise Prevents Synaptic Plasticity Impairments
Induced by Sleep Deprivation

The positive effects of regular exercise on deleterious
behavioral, synaptic, and molecular problems caused by
sleep loss were shown in several studies (6, 13, 16, 18).
These experimental studies demonstrated that the advan-
tageous influences of regular activity at the cellular level
were possibly as a result of its potential to augment the
generation of BDNF and other signaling molecules in the
sleep-deprived animals.

However, in the previous studies, treadmill exercise
could compensate induction and maintenance of LTP
deficits induced by sleep deprivation in the hippocampus
of female (13) and male (16) rats. In addition, these results
in a treadmill running model showed that exercise train-
ing alone had no meaningful effects on the LTP induction
in normal animals (13). These findings support the claim
that forced exercise may limit its capability to improve
only in the existence of cognitive deficits. These investi-
gations revealed that the production of BDNF and other
signaling molecules, as a basic molecular mechanism of
brain plasticity, increased in the sleep-deprived male rats
that did exercise (16, 55).

However, it is extensively reported that running exer-
cise alleviates different ischemic brain injury; facilitates
recovery from injury, and raises protection against brain
insult (60, 66), though the underlying mechanisms are
poorly understood. These benefits are best delineated
with respect to the promotion of neurotrophic factors ex-
pression such as BDNF (30). Although some exercise in-
terventions indicated the significant promotion of cogni-
tive function, learning, and memory function, and brain
health (28, 63, 66-68), other studies revealed the lack of im-
provement of cognitive functions by exercise training (16,
55, 69). This disagreement may be due to the differences in
the duration of training, type of activity, and intensity of
the accomplished training exercises.

7. Effect of Regular Exercise and/or Sleep Deprivation
on BDNF Levels in the Hippocampus of Female Rats

Data from molecular assays showed that hippocampal
BDNF protein levels and mRNA expression of OVX female
animals was decreased by sleep deprivation, meanwhile
sleep-deprived animals that did exercise had higher hip-
pocampal expression of mRNA and protein levels of BDNF

(18). In addition, other experiments revealed that exer-
cise training reversed deleterious alternations of signal-
ing molecules such as BDNF in the hippocampus of sleep-
deprived male rats (16, 55).

It was previously indicated that estrogen replacement
therapy during postmenopausal in females can restrict the
lessening of cognitive performance (70) and can dimin-
ish the danger of Alzheimer disease (71). Moreover ovarian
steroid hormones increase the levels of BDNF protein and
mRNA expression (54). Another document revealed that
variations in emotion, sleep, as well as general, physical,
and mental health during menopause in females were not
considerable (72).

It is well documented that the function of BDNF in
synaptic plasticity might be the main factor for protecting
neural plasticity and disease support at the aging period
and in neurodegenerative disorders (73). It is assumed that
the correlation among steroid hormones, regular activity,
and hippocampal BDNF level is possibly an important fac-
tor to defend brain healthiness (74).

Furthermore, physical exercise could avoid the dimin-
ishing effect of SD on BDNF level in the OVX female an-
imals, although this running protocol did not influence
the mRNA and protein levels of BDNF in the hippocampus
of normal animals that did exercise (18). It was in agree-
ment with other findings that demonstrated the lack of
modified levels of hippocampal BDNF in groups that did
exercise (69). These data support the notion that perhaps
involuntary exercise training applies beneficial effects on
insults or deteriorations such as sleep deficits, brain is-
chemia, and neurodegenerative diseases.

Therefore, several findings indicated that both volun-
tary and involuntary running can amplify the hippocam-
pal trophic factor and other signaling molecules (16, 28).

Results of investigations about the effect of BDNF func-
tion on hippocampus performances generated inconsis-
tent results. It is indicated that brain-derived neurotrophic
factors play a main role in the functions associated with
hippocampus (75, 76). On the contrary, other studies re-
vealed that central application of BDNF did not improve
the acquisition rate of spatial learning-damaged rats (77).
Therefore, difference in techniques, including the dura-
tion and kind of regular activity and experimental proce-
dure might cause diverse results.

8. Conclusions

In conclusion,
1) Evidence indicates that involuntary running can

diminish SD-caused deficits of cognitive functions and
synaptic plasticity in the male and female animals.
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2) Molecular data indicated that physical activity used
a defensive effect against the functions associated with hip-
pocampus and synaptic plasticity destructions induced
by sleep deprivation maybe by increasing BDNF protein,
mRNA expression, and other signaling molecules in the
hippocampus of OVX female rats.
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