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Abstract

Background: The precise identification of attention deficit-hyperactivity disorder (ADHD) is one of the challenging clinical
processes. Disorganizations in functional neural networks revealed via functional magnetic resonance imaging have recently been
contributing. Machine learning approaches, particularly classification methods, have commonly been employed as a framework
for diverse data analysis, indicating promising medical diagnosis results. However, as the neuroimaging data are high-dimensional
with a low sample size (the current dataset), this study aimed to evaluate the classification performance of the models by
considering the specific contribution of the sparsity of data matrices.
Methods: This cross-sectional study analyzed the preprocessed data from the 2011 ADHD-200 Global Competition. A total of 768 and
171 data items were considered training and test, respectively. The diagnosis status was used as a response variable. Age, gender,
hand dominance, and activity relationship between 116 brain regions derived from inverse covariance matrix and inverse sparse
covariance matrix were used as predictive variables. Accordingly, this study compared the performance of three models, namely
support vector machine (SVM), distance-weighted discrimination (DWD), and data maximum dispersion classifier (DMDC) for ADHD
categorization.
Results: The highest value for the total accuracy was reported for the SVM model on the sparse covariance matrix. Moreover, the
highest values for the balanced classification rate (BCR) (59%) and sensitivity (64%) were reported for DMDC on the sparse covariance
matrix. The best level of specificity (99%) was obtained from DWD using the sparse covariance matrix. The highest levels of the values
(i.e., total accuracy and BCR) were achieved through the model fitting on the sparse matrices. Among the six models, the DMDC
model on sparse covariance matrix was the most optimal algorithm due to the superiority of the two indices (i.e., accuracy: 60%
and BCR: 60%) and the favorable balance between sensitivity and specificity values.
Conclusions: Among the current studied three models, DMDC performance, applying the sparse data, remarkably improved
the results of classification processes. Based on the present findings, the neuronal connectivity among subcortical structures
comprising parts of the basal ganglia and cerebellum provides a distinction between ADHD subjects and healthy controls.
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1. Background

Attention deficit-hyperactivity disorder (ADHD) is a
neurodevelopmental pathology that has phenomenally
been recognized as a set of neuropsychiatric impairments,

and its worldwide prevalence ranges from 5% to 10%
in school-age children (1). Adults can also experience
ADHD; however, the pattern is not as clear as in the
childhood period (2). The clinical representation
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comprises a spectrum of symptoms from inattention,
hyperactivity, and impulsivity to the signs of comorbid
depressive and generalized anxiety disorders. ADHD is
accompanied by substantial chronic difficulties, with
yearly costs of approximately $36 billion/year in the
United States. The diagnostic and statistical manual of
mental disorders-fifth edition mainly categorizes ADHD as
predominantly inattentive presentation, predominantly
hyperactive/impulsive presentation, and combined
condition within the intensity range from mild to severe
(3).

The specific role of structural and functional
disorganizations in neuronal systems has recently
made a significant contribution to the explanation of
clinical manifestations (4, 5). Despite the widespread
and significant signs of progress in brain-mapping
techniques, ADHD still encompasses obscure aspects
within its etiological background, which subsequently
could emerge as the numerous insufficiencies in
diagnostic procedures and either pharmacotherapeutics
or non-pharmacotherapeutics practical courses (6,
7). Functional magnetic resonance imaging (fMRI) is
developed to facilitate addressing the characteristics
of the central nervous system’s inaccessible functions
with the potential of providing substantial assistance to
determine the trajectory of diagnosis and mechanism
of interventions through objectively monitoring
functional changes across the neuronal regions that
are hypothetically targeted by the etiological origins (8, 9).

Resting-state fMRI (rs-fMRI) is a relatively new
and robust method for examining the activation and
interactions between different brain regions with no
particular stimulus presentation. The hypothesis that
formulates ADHD as a disorganized brain connectivity
has strongly been supported (10-12). Connectivity analyses
have tried to clarify the neurobiological underpinning
and have identified either lower or higher values for
functional connectivity measures in various brain
networks (13). The possible functional deviations of
the default mode network (DMN) in ADHD have been
evident throughout the literature (14). A pioneering
rs-fMRI study on ADHD adults indicated lower functional
connectivity values within the DMN and between
the caudal parts of the DMN and the dorsal anterior
cingulate cortex (15). The executive control network
(ECN)-amplitude of low-frequency fluctuation was the
most associating pattern for impulsivity. Abnormal
trends of inter-hemispheric functional connectivity were
also detected in the sensorimotor network connectivity
pattern in neurodevelopmental disorders (16). Higher
functional connectivity within the ECN was correlated
with the more subtle clinical symptoms (17).

The fMRI data analysis is a complicated process. One
promising approach to analyzing fMRI data and associated
functional connectivities has been neural networks and
machine learning. Classification techniques are among
the principles of supervised machine learning algorithms.
In these models, the blood oxygenation level-dependent
(BOLD) imaging properties of voxels are considered
predictor variables. Regarding the three main stages of the
machine learning procedure, namely feature selection,
feature extraction, and classifier selection, numerous
studies have developed and improved one or more stages
of this set and applied them for ADHD classification.
Support vector machine (SVM) with recursive feature
elimination (18), least absolute shrinkage and selection
operator (LASSO) (19), and elastic net (20) are among the
well-sophisticated methods that have been applied for the
machine-learning-based classifications.

A graph-kernel regularized LASSO has also been
applied to functional connectivity matrices, which
preserves the local structure among the featured
functional connectivities (FCs) (21). Similarly, for the
feature extraction section, an accumulative body of
evidence showing efficiency (principal component
analysis and independent component analysis) was
primarily introduced to learn the features (20, 22). More
recently, a sparse representation model was introduced
for FCs to recognize individuals with ADHD diagnosis
(23). From a different perspective, since FCs could provide
a brain topography, specific measures are designed to
explore the features of the FC network (24, 25). Among
these methods, an integrated fMRI technique (26) has
attracted more attention for its ability to recognize
reliable FCs through affinity propagation clustering
on the FC network. Additionally, to increase classification
accuracy, this method has analyzed non-imaging variables,
including age, gender, and intelligence quotient (26).

To the best of our knowledge, due to the high fitness
level for small-size data, the classifiers with SVM (24,
27) and extreme learning machines (28) have been
frequently applied for ADHD classification. Furthermore,
a bi-objective classification model based on SVM (29)
was recently developed and introduced to drastically
improve classification accuracy. This approach takes
advantage of a bi-objective optimization function
in the traditional L1-norm SVM. When dealing with
high-dimensional multivariate data, SVMs, with their
robust characteristics (30), are vastly used, additionally
providing individual-specific predictions.

One of the widespread methods for classifying
multimodal neuroimaging findings in the clinical setting
is the SVM (31). This method provides a high level of
classification accuracy, and with the smaller number of
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samples, there would not be an overfitting problem (32).
The efficient analysis of high-dimension

low-sample-size (HDLSS) data has been an abiding
concern when conventional machine learning methods
encounter performance degradation for classification.
Data pilling occurs in the HDLSS workspace through the
data mapping onto the separating hyperplane. Data piling
could impinge the generalization sufficiency of the SVM
in some HDLSS states. Distance-weighted discrimination
(DWD) (33) confronts the data-piling problem and gives
the anticipated improved generalizability. To find the
best-separating hyperplane, DWD estimates coefficients
by solving the below optimization problem.

Although the distance-weighted approaches
can resolve the data-piling phenomenon, they
are computationally laborious since they require
second-order cone programming rather than quadratic
programming. A recently developed linear binary
classifier, denoted by data maximum dispersion classifier
(DMDC) (34), would be beneficial. The DMDC maximizes
data dispersion in projection space, resulting in the
remarkable prevention of the data-pilling problem.
Additionally, it could be applied competently on
HDLSS without any sensitivity to the intercept, and
the implementation would be straightforward with more
subtle computational complexities.

2. Objectives

Despite the remarkable results of the classification
methods, these data categories are still difficult to
interpret. Therefore, this study aimed to fit the three
models of SVM, DWD, and DMDC on inverse covariance
matrix and inverse sparse covariance matrix (as the
connectional network of the brain) and compare these
six types of modeling using indices of classification
evaluation. In order to achieve the pattern of brain
functional connectivities in two groups (i.e., ADHD
subjects and healthy controls), the sparse model
(eliminating the non-efficient brain regions) was applied
in this study.

3. Methods

3.1. Data and Preprocessing

The online available fMRI data of the ADHD-200
Global Competition, which aimed to achieve the best
differentiating model for the diagnosis and discovery
of the neurological markers of ADHD, were used in
this study (35). These data include the diagnosis status
of ADHD, individual characteristics, and fMRI brain

scans of 973 individuals aged 7 - 21 years. Regarding
the inclusion/exclusion criteria, each included center
had applied a set of diagnostics and complementary
assessments. All the centers performed a comprehensive
interview-based assessment based on the diagnostic
and statistical manual of mental disorders framework
by a trained psychiatrist (for a structured diagnosis
of the disorder and ruling out the comorbidities).
The specific details of the diagnostic procedures and
rating scales are provided on the database website. The
current project was performed with the approval ID of
IR.SBMU.PHNS.REC.1399.193 and was evaluated by research
ethics committees of the School of Public Health and
Neuroscience Research Center, Shahid Beheshti University
of Medical Sciences, Tehran, Iran.

In the competition, the data from 776 individuals
were considered training, and the remaining 197 data
were regarded as tests. The current analysis considered
768 and 171 training and test data, respectively. The
available rs-fMRI data were obtained within 120 - 344
time points by eight valid imaging centers in the United
States, China, and the Netherlands. The FSL software
(version 6.0.1) was employed for the preprocessing parts.
Six specific parameters were performed for the MCFLIRT
and rigid-body motion correction sections. Moreover,
the slice-timing correction was specified according to the
data acquisition process exclusively for each center. The
functional data were band-pass filtered (within the range
of 2.8 - 60 Hz) and mapped to a template space (MNI-152)
by a non-linear method. The smoothing procedure
was performed by a three-dimensional Gaussian kernel
(full width at half maximum = 6 mm). The region
of interest-associated mean time series was calculated
for each participant based on the automated anatomical
labeling 1 standard atlas, and the total brain volume was
divided into 116 regions. The value of the BOLD signal in
each of these areas is considered the average BOLD signal
of the voxels located in that area. A bash code system
was developed and used to standardize and automate the
preprocessing parts.

3.2. Data Analysis

The applied models were as follows respectively:
Based on a hyperplane (decision boundary),

SVM categorizes data samples into two groups
within a high-dimensional context. The hyperplane{
x : β0 + xTi β = 0

}
in a linear SVM maximizes all data

points’ smallest margin. This maximization process is
identical to the minimization problem as follows:

argmin
1

2
||β||2 + C

n∑
i=1

ξi
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β0, β, ξi

Subject to yi

(
β0 + xTi β

)
≥ 1− ξi, ξi

≥ 0, i

= 1, 2, . . . , n

Regarding the second model, DWD, to find the
best-separating hyperplane, DWD estimates coefficients
by solving the following optimization problem:

argmin
∑

i

1

di

β0, β

Subject to di = yi
(
β0 + xTi β

)
+ ηi

≥ 0, Vi

ηi ≥ 0 Vi,
∑
i

ηi

≤ c, ||β||22
= 1.

The DMDC solves the convex quadratic programming
formulation similar to SVM as follows:

min
β

(
(β)22
ATβ

+ C0

n∑
i=1

ξi

)

Subject to yi

(
βTxi + b

)
≥ 1− ξi, i
= 1, 2, . . . , n

ξi ≥ 0

ATβ > C, C

> 1

A is the eigenvector that is the highest eigenvalue of Sβ .

Sβ = Q
T
Q

=
∑

x∈class1
(x− u1) (x− u1)

T
+

∑
x∈class2

(x− u2) (x− u2)
T

uj implies the mean of training samples from jth class,
j = 1, 2. The term AT β controls training samples from two
classes, accompanied by the projecting direction denoted
by the β.

The following parts are the detailed explanation of
data analysis presented respectively.

3.3. Optimization of λ Parameter for Estimation of Inverse
Sparse Covariance Matrix

Only the training data and BOLD signal variables of
the 116 brain regions were used in this study. There were
120 to 344 views for each person. The training data were
divided into ten relatively equal sections, with 28 affected
and 49 non-affected in each section randomly selected.
The inverse of the sparse covariance matrix for patients
and non-patients was estimated separately in each section,
with the three usual values ofλ, namely 0.1, 0.01, and 0.001,
and the best λ was identified with the lowest Bayesian
information criterion (BIC). Finally, in the two groups of
patients and non-patients, the λ value with the highest
frequency in the optimal λ in all the ten sections was
considered the optimal λ. Moreover, the optimal λ mean
in both groups was used for all data.

3.4. Estimation of Sparse Inverse Covariance Matrix with LASSO
Graphical Model

At this stage, the inverse of the covariance matrix and
the inverse of the sparse covariance matrix were estimated
using the LASSO graphical model based on the optimal
λ obtained from the previous step. Two matrices of
116 × 116 were considered for each individual such that
every element represented the correlation of activity or
relationship between the two brain regions.

3.5. Creation of Proper Data Structure for Classification Model

The obtained correlation was then considered an
information vector for each individual. Since the inverse
of the covariance matrix and the inverse of the sparse
covariance matrix are symmetric, the upper triangular
elements were considered. The number of these elements
is 6670. The new data structure was designed to have
one row per person and consider 6670 brain regions as
variables. After the incorporation of metadata, such as
the personal characteristics of each participant and the
disorder status, into the connection space, the organized
data were ready for classification. Furthermore, since
the fMRI data and the individual characteristics were
disparately dispersed, the values of the quantitative
variables were also standardized.

3.6. Penalty Parameter C Optimization for SVM, DWD, and
DMDC Models

Then, the training data were exclusively used. Since
two datasets based on the inverse covariance matrix, the
sparse inverse covariance matrix, and SVM, DWD, and
DMDC models are considered for comparison, all of the
measures in this part were implemented for all six states.
In order to optimize the parameter C, the training dataset
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was divided into ten groups according to the details
of the parameter λ optimization step. At this stage, a
cross-validation scheme was used; accordingly, nine parts
of the data were considered training data sets, and one part
was regarded as a testing set. Then, SVM, DWD, and DMDC
models were fitted to the training data. For parameter C,
the values of 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100,
1000, 10000, and 100000 were computed. At every ten
times fitting of the model and its evaluation, the value
of C that is higher than the balanced classification rate
(BCR) criterion was chosen in each test, and then the most
frequent (the mode value) value for the parameter C was
selected as the optimal one for the whole process. At this
stage, six optimal Cs were obtained for a combination
of three models and two (sparse and non-sparse) inverse
covariance matrices.

3.7. Fitting SVM, DWD, and DMDC Models

By considering the optimal C values obtained from the
previous step, SVM, DWD, and DMDC models were fitted to
the data obtained from the inverse covariance matrix and
the sparse inverse of the covariance matrix to the training
data.

3.8. Evaluation of Models with Testing Data

The testing data were classified with the fitted models
in the previous step, and the results were compared
with the actual labels. Then, sensitivity and specificity,
the overall accuracy of the two models, and BCR were
calculated. The models were also compared based on the
aforementioned indices. Data analysis was performed in R
software (version 4.1.1). To fit the LASSO graphic model, the
glasso package (1.11) was used, and SVM and DWD models
were fitted on the Liblinear (2.10 - 22) and DWD Large (0.1 -
0) R package (version 4.1.1). Regarding the DMDC method,
the associated code was written in R. Additionally, all the
steps of estimating the optimal parameters λ and C were
coded in R.

3.9. Visualization/Illustration

Subsequently, to more easily interpret the coefficients
estimated by the chosen research model, these coefficients
were imaged on the brain. This visualization was
performed by the BrainNet Viewer module in MATLAB
software (version 2013) (Figure 1).

3.10. Model Assessment Criteria

In order to assess the graphical model of LASSO, the BIC
was applied as follows:

BIC = −2L (Ω (λ)) + d (λ) lognt

In which the L(Ω(λ)) is the optimized logarithmic
function that is defined in the previous equation, d(λ) is
the degree of freedom and is obtained from the formula
d (λ) = m (λ) (m (λ) − 1) /2, and the m(λ) is the
number of non-zero items Ω that is estimated by the
specified λ. The lower amounts of the BIC indicated
better model efficiencies. For the assessment of the sparse
and non-sparse models of SVM, the indices of sensitivity,
specificity, mean accuracy, and BCR were applied. The
unbalanced nature of the response variable was the reason
for using the BCR index.

4. Results

Table 1 shows a summary of the descriptive statistics
of the variables for the individual characteristics. The
minimum and maximum values of the brain BOLD were
-181.69 and 250.81, respectively. Moreover, the median, by
considering the semi-interquartile range, was 0.38.

4.1. Assessment of Models

Among the three λ values considered for the inverse
estimation of the sparse covariance matrix, λ = 0.1 with
the lowest BIC value was selected as the optimal one.
In order to illustrate the concept of sparse, examples of
variance-covariance matrix and sparse inverse matrix of
variance-covariance are depicted in Figure 2. Figure 2
shows the variance-covariance matrix of the activity of 116
brain regions of an individual. In this variance-covariance
matrix, the values are indicated by the color spectrum.

By comparing two types of matrices, it could be
observed that after the sparsing process, most of the
matrix items became zero, and exclusively the critical
connections adopted non-zero values. As stated earlier,
considering the inverse of the covariance matrix as sparse
and non-sparse and the sparse and non-sparse SVM models,
there were four different modeling modes; the results of
each are as follows.

4.2. Evaluation of SVM, DWD, and DMDC Models on Non-sparse
and Sparse Inverse Covariance Matrices

In this case, Table 2 shows the confusion matrix made
by the SVM, DWD, and DMDC models and the associated
evaluation indices for six states. As can be observed,
the overall accuracy of the model, the ratio of correct
predictions to the total number of data, is 49% for the
SVM model of the inverse covariance matrix (the optimal
γ value obtained from the BCR-based cross-validation as
100000). The sensitivity and its specificity were reported
as 51% and 48%, respectively. The overall accuracy and BCR
values were 63% and 59% for this model on the inverse
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Figure 1. Significant connections in attention deficit-hyperactivity disorder diagnosis based on the best-fitted model (i.e., data maximum dispersion classifier on sparse inverse
covariance matrix). The more the coefficient magnitude is positively correlated with the more magnitude of edges. The blue and yellow edges are related to the positive and
negative coefficients, respectively. Blue = direct correlation, yellow = inverse correlation with the diagnosis status.

of the sparse covariance matrix, respectively (the optimal
γ value obtained from the BCR-based cross-validation as
1000). The SVM model for the inverse of the sparse
covariance matrix was indicated to be 30% sensitive
and 89% specific, which showed poorer performance in
predicting affected subjects rather than non-affected ones.

Regarding the DWD model, the total accuracy of the
inverse covariance matrix (the optimal γ value obtained
from the BCR-based cross-validation as 100) was obtained
as 37%. The sensitivity and specificity were 39% and 36%,
respectively. The overall accuracy and BCR values were 57%
and 53% for this model on the inverse sparse covariance
matrix, respectively (the optimal γ value obtained from

the BCR-based cross-validation as 10). The DWD model for
the inverse of the sparse covariance matrix was indicated
to be 6% sensitive and 99% specific, which showed very
poor performance in predicting affected subjects and very
well in non-affected ones.

The inverse covariance matrix (the optimal γ value
obtained from the BCR-based cross-validation as 100)
within the DMDC model showed a total accuracy of
51%, with sensitivity and specificity of 64% and 40%,
respectively. The overall accuracy and BCR values were
60% and 60% for this model on the inverse of the
sparse covariance matrix, respectively (the optimal γ
value obtained from the BCR-based cross-validation as 10).

6 Arch Neurosci. 2023; 10(2):e134329.
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Table 1. Descriptive Statistics of Individual Properties

Variables and Classes ADHD Subjects Healthy Controls Total

Gender

Female 72 (20.6) 278 (79.4) 350 (37.3)

Male 285 (48.4) 304 (51.6) 589 (62.7)

Hand dominance

Left-handed 134 (53.6) 116 (46.4) 250 (26.6)

Right-handed 223 (32.4) 466 (67.6) 689 (73.4)

Total 357 (38) 582 (62)

Age (y) Values

Minimum - maximum 7 - 21

Median 11

Interquartile range (Q3-Q1) 4 (13 - 9)

Abbreviation: ADHD, attention deficit-hyperactivity disorder.
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Figure 2. Samples of A, variance-covariance matrix; and B, inverse of sparse variance-covariance matrix. Part A shows the variance-covariance matrix of the 116 brain-associated
activities. After the sparsing process, most of the matrix entities were zero, and only the prominent connections had non-zero values.

The performance of the DWD model for the inverse of
the sparse covariance matrix was 64% sensitive and 56%
specific.

4.3. Comparison of Models

Figure 3 illustrates the evaluation criteria for
comparing SVM, DWD, and DMDC models based on
the inverse covariance matrices and inverse of the sparse
covariance matrices. Accordingly, the highest value for
the total accuracy was for the SVM model on the sparse
covariance matrix. The highest values for the BCR and
sensitivity were for DMDC on the sparse covariance
matrix. Moreover, the best level of specificity was obtained
from DWD using the sparse covariance matrix. The

highest levels of values (i.e., total accuracy and BCR)
were achieved through the model fitting on the sparse
matrices. Among the six models, the DMDC model on
sparse covariance matrix was the most optimal algorithm
due to the superiority of the two indices and the favorable
balance between sensitivity and specificity values.

4.4. Interpretation of Selected Model Coefficients

A sparse version of DMDC was used for the pattern
recognition process. This section deals with the
interpretation of the coefficients of the selected model.
The estimated coefficient comprises 55 non-zero in the
model. Table 3 shows the coefficients for the individual
characteristics. As can be observed, male gender, younger
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Table 2. Results of Support Vector Machine, Distance-Weighted Discrimination, and Data Maximum Dispersion Classifier on Non-sparse and Sparse Inverse Covariance Matrices

ADHD Matrix
Predicted by the Model

Specificity (%) Sensitivity (%) Accuracy (%) BCR (%)No Yes

Reality

SVM

Inverse covariance matrix 48 51 49 49

No 45 49

Yes 38 39

Inverse sparse covariance
matrix

89 30 63 59

No 84 10

Yes 54 23

DWD

Inverse covariance matrix 36 39 37 38

No 34 60

Yes 47 30

Inverse sparse covariance
matrix

99 6 57 53

No 93 1

Yes 72 5

DMDC

Inverse covariance matrix 40 64 51 52

No 38 56

Yes 28 49

Inverse sparse covariance
matrix

56 64 60 60

No 45 36

Yes 32 58

Abbreviations: ADHD, attention deficit-hyperactivity disorder; SVM, support vector machine; DWD, distance-weighted discrimination; DMDC, data maximum dispersion
classifier; BCR, balanced classification rate.

ages, and left-handedness are positively correlated with
ADHD. The magnitude of the coefficients indicated the
strength of the relationship; in other words, ADHD
was more strongly correlated with gender and hand
dominance than age.

Table 3. Estimated Coefficients for Individual Characteristics by the Selected Model

Predicting Variable Coefficients

Gender 0.43

Age -0.23

Hand dominance -0.18

As mentioned earlier, other predictor variables were
the covariance of the extent of activity in different brain
regions. Therefore, it can be said that the non-zero
coefficients of the selected model refer to the brain
connections that are important in the classification of

ADHD. Table 4 shows these connections and their values.
Positive coefficients showed correlations directly related
to ADHD. Negative coefficients indicated relationships
inversely related to ADHD. The magnitude of the
coefficients indicated the importance of the relationship.
Figure 1 illustrates the areas affected by ADHD from
the three perspectives above the head, right ear, and
front of the head. In these figures, the size of an area or
node is proportional to the number of communications
associated with that area. In other words, larger nodes
indicate the greater importance of the regions in ADHD.
Figure 1 illustrates the network communication of brain
regions in ADHD and part of the output of the classification
model.

8 Arch Neurosci. 2023; 10(2):e134329.
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Table 4. Positive and Negative Correlation Coefficients; Positive Values Implying Connections with Direct Association with Attention Deficit-Hyperactivity Disorder Diagnosis,
and Negative Values Implying Inverse Correlations

Regional Connections Coefficients

Positive Correlations

Putamen_R&Insula_L 0.20

Parietal_Inf_L&Parietal_Inf_R 0.175

Vermis_10&Calcarine_R 0.141

Vermis_1_2&Cerebelum_3_L 0.108

Vermis_10&Occipital_Mid_L 0.108

Vermis_10&Cerebelum_7b_L 0.098

Vermis_10&Vermis_7 0.095

Paracentral_Lobule_R&Postcentral_L 0.091

Cerebelum_8_L&Lingual_L 0.087

Vermis_10&Frontal_Med_Orb_L 0.079

Heschl_L&Angular_R 0.078

Vermis_10&Heschl_L 0.062

Cerebelum_3_R&Supp_Motor_Area_L 0.062

Rolandic_Oper_L&Frontal_Inf_Orb_R 0.060

Vermis_1_2&Cingulum_Post_L 0.051

Temporal_Inf_L&Supp_Motor_Area_R 0.049

Caudate_R&Postcentral_L 0.047

Heschl_L&Calcarine_R 0.042

Heschl_L&Cingulum_Ant_L 0.032

Cingulum_Post_R&Cingulum_Post_L 0.031

Vermis_10&Putamen_R 0.031

Heschl_L&Cingulum_Post_L 0.030

Putamen_R&Frontal_Inf_Orb_R 0.028

Cerebelum_6_R&Frontal_Mid_L 0.025

Vermis_4_5&Angular_R 0.013

Cerebelum_Crus1_L&Cingulum_Post_L 0.007

Cerebelum_4_5_R&Lingual_L 0.005

Vermis_1_2&Cingulum_Ant_L 0.003

Vermis_10&Temporal_Inf_R 0.003

Negative Correlations

Cerebelum_9_R&Hippocampus_L -0.109

Putamen_L&Frontal_Inf_Orb_R -0.104

Parietal_Inf_R&Frontal_Mid_L -0.098

Cuneus_R&Precentral_L -0.089

Cerebelum_6_R&Fusiform_L -0.078

Heschl_R&Cingulum_Mid_R -0.066

Cerebelum_Crus1_L&Rolandic_Oper_L -0.059

Vermis_10&Occipital_Inf_R -0.054

Vermis_10&Cerebelum_8_L -0.053

Cingulum_Post_R&Frontal_Mid_L -0.046

Vermis_10&Cerebelum_4_5_R -0.039

Cerebelum_7b_R&Angular_R -0.037

Cerebelum_6_R&Occipital_Inf_R -0.034

Temporal_Mid_R&Putamen_R -0.032

Supp_Motor_Area_R&Frontal_Inf_Orb_R -0.019

Cerebelum_Crus1_L&Fusiform_L -0.018

Fusiform_R&Cingulum_Post_L -0.009

Putamen_L&Calcarine_L -0.005

Cerebelum_9_R&Supp_Motor_Area_R -0.001

Temporal_Sup_L&Frontal_Inf_Orb_L -0.001

Cerebelum_Crus1_L&Lingual_L -0.001
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Figure 3. Comparison of the Acc, sensitivity, specificity, and BCR, within the SVM, DWD, and DMDC models. Abbreviations: Acc, accuracy; BCR, balanced criterion rate; SVM,
support vector machine; DWD, distance-weighted discrimination; DMDC, data maximum dispersion classifier.

5. Discussion

Throughout the present study, it was aimed to
apply network-based models, SVM, DWD, and DMDC,
to classify ADHD-associated rs-fMRI data. The inverse
of the covariance matrix was considered the item that
best represents the brain communication networks
and the predictive variables of the classification models
in both sparse and non-sparse states. Ultimately, the
classification models were fitted to the training data
and were evaluated using the test data. The obtained
results also demonstrated that the cerebellar and basal
ganglia-related areas were more crucial in providing
informative distinctions between ADHD and healthy
participants. According to the results of the currently used
models, it might be concluded that the inverse covariance
matrices and one sparsing step could significantly
improve the performance of the model and enhance the
efficiencies of all models in the classification procedures.
Moreover, reducing the non-zero coefficients from 6675
to 55 might bring more interpretation power in the
coefficients and could provide more possibilities for
creating a brain communication network that affects or
emerges from the phenomenology of ADHD. When these
models were applied to the sparse inverse covariance
matrix, again, it generated more sensitivity and higher

BCR values. Among the current models, the DMDC
performance for the sparse covariance matrix gained the
most optimality.

The best model presented in the Global Competition
belongs to the Johns Hopkins University team, a
cumulative model with 61% overall accuracy, 57.5%
balanced rating, 21% sensitivity, and 94% specificity (36).
The J-statistic is the sum of the sensitivity and specificity
minus one and can be equal to the area below the surface
of the receiver operating characteristic curve (37). The
J-statistic in the present study was 0.31. In 2013, Ghiassian
et al. demonstrated that as the number of predictor
variables increased to 211, the classification performance
was reduced, and their overall model accuracy in the
balanced data was 62.5 (38). In this case, it can be
said that in the present study, using the sparse vector
machine eliminated the need for selecting effective
predictive variables before modeling by automatically
selecting the variables. In a 2013 study by Hart et al.,
by fitting the Gaussian process classification model to
fMRI data obtained from an event-oriented design in
60 right-handed male adolescents aged 10 - 17 years for
identifying ADHD, the sensitivity, specificity, and overall
accuracy rates were reported as 90%, 63%, and 77% (39). The
higher performance of the aforementioned study seems
to be a result of employing the event-oriented design for
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data collection, which has a higher signal intensity than
the rest state. Limiting age, gender, and hand preference
can also cause a difference in performance (39).

In 2015, Rosa et al. (40) compared the performance of
two models of L1-norm and L2-norm SVMs in classifying
patients with acute depressive disorder with two stages of
sparseness, namely the sparse inverse matrix covariance
and the SVM model. Rosa et al. observed more improved
classification performance. Nevertheless, in the present
study, it was concluded that the sparsity of the covariance
matrix, in addition to using a sparse SVM model, slightly
reduced the classification performance. The conclusions
of the two studies are differential, probably due to the
applied atlases and the greater number of predictor
variables (9316 variables) in the study by Rosa et al.

In 2015, Pastor et al. estimated the prevalence of
ADHD in the United States to be 13.3% and 5.6% in
male and female adolescents, respectively (41). The
estimates of these studies with conclusions about gender
coefficient are consistent with the results of the present
study. The associations between left-handedness and
ADHD have not been consistent throughout the studies.
Although abnormal brain laterality is reported in children
with ADHD, the correlations with the severity, age,
gender, comorbid psychiatric problems, and parental
characteristics are extremely vague. In a 2012 study,
Ghanizadeh reported that left-handedness did not show
remarkable associations with higher inattentiveness
or hyperactivity (parent-reported). Although hand-use
preference is not gender-specific in ADHD (42), there are
still conflicting findings (43).

Schmidt et al. demonstrated that ADHD is significantly
more prevalent among left-handed individuals, which is
in line with the interpretation of the variable of hand
dominance in the present study (44). The prevalence of
ADHD in children and adolescents is higher than in adults,
which is consistent with the negative age coefficient
interpretation in this study, as previously discussed.

In their 2012 study, Cheng et al. concluded that the
most effective brain regions for ADHD are the cerebellar
and prefrontal cortices (45). In the present study, out of
the 12 most influential areas, six items were in these two
general areas. More specifically, in the present study, the
connectivity between the right part of the putamen and
the left insular regions was also observed to be positively
correlated with ADHD diagnosis. A reliable line of evidence
indicated the role of basal ganglia compartments (46),
such as putamen (47, 48), in the pathophysiological course
of ADHD.

Putamen have had integral roles in both
movement-related components and somatosensory
processing, and both of these are remarkably impaired in

ADHD states. A novel work by Tang et al. demonstrated
that the impaired basal ganglia morphological structure
could be an evident distinction between ADHD male
and female adolescents; this deficiency played essential
roles in controlling motor responses; accordingly, male
adolescents with ADHD showed increased commission
error rates and greater variabilities in responses regardless
of task requirements (49). Similarly, higher connectivity
values were observed in the corticostriatal circuits in
children with hyperactive-impulsive ADHD; nevertheless,
inattentive individuals showed strong communications
across the ventral part of the attentional network (50).
Conversely, a recent study by Mostert et al. in adult
ADHD demonstrated significant connectivity values in
the anterior cingulate node of the executive control
center without any distinctions in the areas of the basal
ganglia and the DMN (51). Owing to the strategic site of
the insular cortex, it integrally contributes to a broad
spectrum of functions encompassing sensorimotor,
olfaction-gustatory, socio-emotional, and cognitive
functions (52). More specifically, regarding the central
role of the putamen and insula in somatosensory and
executive functions, it would not be surprising to see their
functional link in making a distinction between patients
and healthy individuals statistically significant (53).

The functional connectivity between the right parts of
the cerebellum and the left parts of the hippocampus has
shown an inverse correlation with the ADHD diagnosis.
Despite the classical contributions of cerebellar apparatus
in schematizing the movement-related parameters,
different anatomical and functional sections of this
highly intelligent part of the central nervous system have
increasingly gained attention considering roles in the
higher cognitive functions, such as fine spatiotemporal
coordination and perceptions that subsequently
could affect a broad range of performances (54). The
hippocampus and particularly its rostral parts are
connected to the cerebellum and, via this interaction,
subserve different dimensions of spatial representation,
spatial navigation (i.e., both allocentric and egocentric
navigation), spatial learning, and pattern recognition
processes (55). Regardless of the isolated roles of the
hippocampus and cerebellum in ADHD, the emergent
function of their associations could also be a dimension
of the ADHD pathophysiology, as these patients have
challenging troubles in spatial working memory tasks
(56).

Regarding negative correlations in the present study,
the relationship between the right posterior cingulate and
the left middle frontal cortex regions was also observed
to be inversely correlated with ADHD. Fair et al., in
an assessment of brain communication in 7-16-year-old
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subjects with ADHD, showed that the communication
between the posterior cingulate cortex and frontal areas
was less pronounced than the subjects with this disorder
(14).

A spectrum of deficits in different domains of
attention, emotion processing, emotion regulation,
and various manifestations of social cognition
are frequently-observed phenomena in disordered
populations and health conditions that challenge
appropriate distinctions. This ambiguity is even more
pronounced in neurodevelopmental disorders. Since the
clinical manifestations are not fully completed yet, there
are significant troubles in diagnostics and therapeutics
in the lower age ranges, and co-occurring clinical profiles
(e.g., autism and ADHD) are prevalent. Moreover, despite
the high dimensionality of neuroimaging datasets, the
centers do not usually provide sufficient sample size
regarding neurodevelopmental disorders (probably due
to the difficulties in image acquisition in this population);
therefore, applying an efficient computational model
which can classify the subjects with this disorder and
healthy counterparts might be a promising approach. The
DMDC model is one of these types and can be an optimum
modeling approach regarding neuroimaging datasets.
The utilization of these machine learning-based models
would be more feasible if integrated with diagnostic
software and applications.

5.1. Conclusions

Employing mathematical models more compatible
with the HDLSS data, such as DMDC, can remarkably
improve the results of classification processes and
outperform the other existing methods. The application
of these approaches to neuronal-associated parameters
comprising functional connectivity might be an optimal
tool for differentiating between ADHD individuals and
healthy counterparts. Based on the present findings,
the neuronal connectivity among subcortical structures
comprising parts of the basal ganglia and cerebellum
provides a distinction between ADHD subjects and
healthy controls. Moreover, based on the present results,
ADHD has a direct relationship with the male gender,
left-handedness, and younger ages.
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