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Abstract

Background: Epilepsy is one of the most important diseases of the central nervous system, for which has no definitive treatment.
Neurotrophic factors increase the survival of nerve cells and improve the treatment of neurological diseases. Identifying factors
that affect the increase of neurotrophins in the brain is an important goal for brain health and function.
Objectives: This study aimed to investigate the effectiveness of exercise on neurotrophic factors by influencing the expression of
vanilloid receptor type 1 (TRPV1).
Methods: Convulsions were induced by injecting pentylenetetrazol (PTZ; 35 mg/kg) five hours after exercise. Animals were divided
into five groups: sham (Sham), seizure (PTZ), exercise (EX), exercise with seizure induction (EX+PTZ), and exercise before seizure
induction (EX-PTZ). The exercise was 30 minutes of forced running on a treadmill, five days a week for four weeks.
Results: The average percentage of NGF cells in the exercise groups (EX), exercise with seizure induction (EX+PTZ), and exercise
before seizure induction (EX-PTZ), and GDNF in the exercise group with seizure induction (EX+PTZ) had a significant increase com-
pared to the seizure group (PTZ). Also, TRPV1 activity in exercise groups (EX), exercise with seizure induction (EX+PTZ), and exercise
before seizure induction (EX-PTZ) showed a significant increase compared to the seizure group (PTZ).
Conclusions: Our findings suggested the possible antiepileptic and antiepileptogenesis effects of exercise through activation of
neurotrophic factors and TRPV1 modulation.
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1. Background

Epilepsy is one of the brain disorders characterized by
frequent and sudden seizures and affects half to one per-
cent of the world population (1). In epilepsy, the excitabil-
ity of neurons is permanently increased in the central ner-
vous system (CNS) following an imbalance between the
excitatory and inhibitory systems (2), thus causing func-
tional alteration of ion channels and neurotransmitter re-
ceptors and increasing the permeability of the blood-brain
barrier and expression changes of the glutamate receptor
subunits (3, 4). In more than 70% of patients with epilepsy,
seizures are suppressed by antiepileptic drugs (5). Some
major side effects of antiepileptic drugs, such as neurotox-
icity and hepatotoxicity, have attracted the attention of re-
searchers to find non-medicinal alternatives (6, 7).

New studies show that sports interventions can im-
prove cognitive functions, increase brain activity, and re-

duce psychological symptoms (8, 9). Both high- and
moderate-intensity aerobic exercises increase the level
of neurotrophins and neurotransmitters and improve
psycho-cognitive performance at all ages (10, 11). Also, ex-
ercise can reduce the severity of seizures and delay their
onset (2). One of the mechanisms through which exercise
leads to the improvement of brain function is the poten-
tiation of neurotrophic factors (NTFs). Neurotrophic fac-
tors are small proteins that have key roles in the regener-
ation of nerve cells and neural survival (12). Nerve growth
factor (NGF) is essential for the growth and maintenance
of the phenotype of neurons in the peripheral nervous sys-
tem and the functional integrity of cholinergic neurons in
the CNS (13). Also, glial cell-derived growth factor (GDNF) is
critical for neuronal survival and neurogenesis (14).

Previous studies have reported exercise stimulates the
regeneration of nerve cells by increasing the expression of
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NGF (15). Exercises also lead to the production of GDNF
factor produced by the glial cells of the substantia nigra,
where dopaminergic neurons are located. Therefore, ex-
ercise improves plasticity in dopaminergic neurons by in-
creasing the production of GDNF (16). TRPV1 is one of the
transient potential receptors (TRP) that belongs to the fam-
ily of non-specific voltage-gated and ligand-gated ion chan-
nels and is more permeable to calcium than other cations.
The expression level of TRPV1 in the CNS is significantly
lower than in the peripheral system, but this small amount
plays an important and significant effect on the central (17,
18). There is evidence that TRPV1 receptors in the brain are
involved in many fundamental functions, including synap-
tic transmission and synaptic plasticity. TRPV1 expression
is variable and depends on the presence or absence of
growth factors. Considerable studies on TRPV1 receptors
indicate that these receptors can be considered specific tar-
gets for antiepileptic compounds (19). Evidence suggests
that NTFs influence seizure-related processes through the
regulation of TRPV1 receptors (20).

Even though the nervous system is one of the parts that
has always been of interest in adapting to exercises. There
has not been enough research regarding clarifying the in-
fluence and possible compatibility of TRPV1 with sports
training. But the role of this receptor is prominent in the
goals related to the health of sports.

2. Objectives

This study aimed to investigate the effectiveness of ex-
ercise on neurotrophic factors by influencing the expres-
sion of vanilloid receptor type 1 (TRPV1). Considering the
role of moderate physical exercise on seizure alleviation
and also its role in the activation of neurotrophic factors,
this study aimed to investigate whether TRPV1 modulation
through neurotrophic factors activation in the hippocam-
pus may be one of the underlying mechanisms for exercise
effectiveness in epilepsy or not.

3. Methods

3.1. Animals

Thirty adult male Wistar-Bauzen rats weighing 250 to
300 g were placed in a controlled environment with a light-
dark cycle at a temperature of 22 ± 1°C for one week be-
fore the beginning of the experiment. All experiments
were performed according to the protocol approved by the
ethical principles of working with laboratory animals of
Iran University of Medical Sciences (IR.IUMS.REC.1399.023).
Animals were randomly divided into five groups (n = 6).
(1) Seizure group: Seizure was induced by intraperitoneal
(IP) injection of Pentylenetetrazol (PTZ) every other day for
four weeks. (2) Sham group: 0.9% normal saline was in-
jected according to the PTZ protocol. (3) Exercise group

(EX): The animals in this group had to run on a treadmill for
30 minutes five days a week in weeks one to four. (4) Exer-
cise and seizure group (EX+PTZ): Seizure and exercise were
performed for four weeks. Animals were forced to run on
a treadmill five days a week, and seizures were performed
five hours after exercise according to the seizure group
protocol. (5) Exercise before seizure induction group (EX-
PTZ): Animals in this group were forced to do exercise for
four weeks like the exercise group (without PTZ injection).
In weeks five to eight, seizure induction and exercise were
done according to the protocol of the exercise and seizure
group (EX + PTZ).

3.2. Treadmill Exercise Protocol

Rats in EX, EX+PTZ, and EX-PTZ groups were forced to
run on a treadmill for 30 minutes, five days a week. The
speed of the treadmill was gradually increased at a zero-
degree incline (5 m/min every five min, up to 25 m/min) (2).
The first and last three minutes were considered warm-up
and cool-down, respectively.

3.3. Immunohistofluorescence

After the last injection and exercise, the animals were
anesthetized with 350 mg/kg chloroform (Sigma–Aldrich).
After complete anesthesia, heart perfusion was performed
first with 250 mL of saline and then with 400 mL of
paraformaldehyde (PFA) solution. After the completion
of perfusion, the head of the animal was detached, and
the brain was removed from the skull and placed in 4%
paraformaldehyde at 4°C for one week (21).

Tissue samples were embedded in paraffin blocks and
then coronally cut with a thickness of 8 µm by micro-
tome (21). Three parts of each brain were selected and de-
paraffinized at a distance of 30 µm. Then they were de-
hydrated by xylene and alcohol and washed three times
with phosphate-buffered saline (PBS). Then the slices were
washed three times in Tris wash buffer (Three minutes
each time) and with a secondary antibody (Goat polyclonal
Anti Rabbit IgG) conjugated with DyLight 484 (Cat.no:
GTX213110-04) for one hour at room temperature. The
chamber was incubated and washed three more times in
Tris wash buffer (for three minutes each). Samples were
photographed for statistical analysis using a digital cam-
era (Nikon, objective lens 40×) connected to a fluorescent
microscope (100 Ts Nikon Florescent).

3.4. Statistical Analysis

All the values were presented using Mean ± standard
error of mean (S.E.M). The data were analyzed by SPSS soft-
ware. One-way ANONA analysis was used to compare the
experimental groups and followed by post-hoc Tukey’s test
for between groups comparison. The significance level of
the tests was considered P < 0.05.
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4. Results

4.1. The Effect of Treadmill Exercise on the Distribution of NGF,
GDNF, and TRPV1 Receptor

4.1.1. Distribution of NGF in Hippocampal Regions
The mean percentage of NGF cells in the CA1 region in

the PTZ group (0.4 ± 0.02) was significantly decreased com-
pared to the Sham group (0.7 ± 0.03) (P < 0.01). There
was no significant difference compared to the Sham group
in EX+PTZ (0.6 ± 0.03), EX (0.7 ± 0.02), and EX-PTZ (0.7 ±
0.02) groups, (respectively, P = 0.4 and P = 0.9). Also, in the
EX+PTZ group, EX and EX-PTZ showed a significant increase
compared to the PTZ group (P < 0.01) (Figure 1B).

The mean percentage of NGF cells in the CA3 region
in the PTZ group was (0.1 ± 0.01) compared to the Sham
group (0.3 ± 0.03), which has decreased significantly (P <
0.05). However, in EX+PTZ (0.3 ± 0.0), EX (0.3 ± 0.06), and
EX-PTZ (0.3 ± 0.06) groups, there was no significant differ-
ence compared to the Sham group (P = 0.6 and P = 1, respec-
tively). Also, in the EX+PTZ, EX, and EX-PTZ groups, there
was no significant difference compared to the PTZ group (P
= 0.3 and P = 0.06, respectively). The distribution of NGF in
the CA1 and CA3 regions in the PTZ group was significantly
reduced compared to the Sham group. The distribution of
NGF in the CA1 region showed a significant increase in the
EX+PTZ, EX, and EX-PTZ groups compared to the PTZ group.
In the bar chart, a and aa indicate P < 0.05 and P < 0.01 com-
pared to the Sham group, respectively and bb indicates P <
0.01 compared to the PTZ group (Figure 1).

4.1.2. Distribution of GDNF in Hippocampal Regions
The mean ± standard deviation (SD) percentage of

GDNF cells in the CA1 region in the PTZ group (0.2 ±
0.03) showed a significant decrease compared to the Sham
group (0.5 ± 0.06) (P < 0.01). But in the EX+PTZ (0.5 ±
0.03), EX (0.4 ± 0.0), and EX-PTZ (0.4 ± 0.0) groups, it did
not show any significant difference compared to the Sham
group (P = 1 and P = 0.1, respectively). It also showed a sig-
nificant increase in the EX+PTZ group compared to the PTZ
group (P < 0.01). However, there was no significant differ-
ence in EX and EX-PTZ groups compared to the PTZ group
(P = 0.2) (Figure 2B).

The mean ± SD percentage of GDNF cells in the CA3 re-
gion in the PTZ group (0.8 ± 0.03) compared to the Sham
group (0.9 ± 0.0) did not show a significant difference (P
= 0.3). Also, in the EX+PTZ (0.7 ± 0.0), EX (0.7 ± 0.03), and
EX-PTZ (0.7 ± 0.03) groups, it showed a significant decrease
compared to the Sham group (P < 0.01). In addition, it
showed a significant decrease in the EX+PTZ group com-
pared to the PTZ group (P < 0.05). However, there was no
significant difference in EX and EX-PTZ groups compared
to the PTZ group (P = 0.09).

The distribution of GDNF in the CA1 region In the PTZ
group and the CA3 region in the EX+PTZ, EX, and EX-PTZ

groups was significantly reduced compared to the Sham
group. It showed a significant increase and decrease in the
CA1 and CA3 regions in the EX+PTZ group compared to the
PTZ group, respectively. In the bar chart, aa indicates P <
0.01 compared to the Sham group, and b and bb indicate
P < 0.05 and P < 0.01 compared to the PTZ group, respec-
tively.

4.1.3. Distribution of TRPV1 Receptor in Hippocampal Regions
The mean ± SD percentage of TRPV1 receptor distribu-

tion in the CA1 region in the PTZ (0.1 ± 0.01), EX (0.3 ± 0.0),
and EX-PTZ (0.3 ± 0.0) groups did not show any significant
difference compared to the Sham group (0.2 ± 0.03) (P =
0.1 and P = 0.4, respectively). But in the EX+PTZ group (0.4
± 0.02), it showed a significant increase compared to the
Sham group (P < 0.01). Also, the mean percentage of TRPV1
receptor distribution in the EX+PTZ, EX, and EX-PTZ groups
showed a significant increase compared to the PTZ group
(P < 0.001 and P < 0.05, respectively) (Figure 3B).

The mean ± SD percentage of TRPV1 receptor distribu-
tion in the CA3 region in PTZ (0.3 ± 0.03), EX+PTZ (0.2 ± 0.0),
EX (0.2 ± 0.03), and EX-PTZ (0.2 ± 0.03) groups compared
to Sham group (0.2 ± 0.03) showed no significant differ-
ence (P = 0.1 and P = 0.8, respectively). Also, in the EX+PTZ,
EX, and EX-PTZ groups, there was no significant difference
compared to the PTZ group (P = 0.06 and P = 0.4, respec-
tively).

4.2. Correlation Between Expression of NGF/GDNF and TRPV1
The relationship between NGF/GDNF and TRPV1 expres-

sion in CA1 and CA3 regions is presented (Figure 4). The cor-
relation between NGF and TRPV1 expression in the CA1 re-
gion showed that high NGF expression (Figure 4A; r = 0.36,
P < 0.05) was associated with high TRPV1 level, but there
was no significant correlation between GDNF and TRPV1 ex-
pression (Figure 4B; r = 0.32, P = 0.05). The correlation be-
tween the expression of NGF/GDNF and TRPV1 in the CA3 re-
gion showed that there was no significant correlation be-
tween the expression of NGF and TRPV1 (Figure 4C; r = 0.27,
P = 0.08) and also between the expression of GDNF and
TRPV1 (Figure 4D; r = 0.26, P = 0.08). (A) and B) scatter plots
show the correlation between NGF/GDNF and TRPV1 expres-
sion in the CA1 region. A strong correlation between NGF
and TRPV1 expression was shown in the CA1 region. (C) and
(D) scatter plots show the correlation between NGF/GDNF
and TRPV1 expression in the CA3 region. There was no sig-
nificant correlation between the expression of NGF/GDNF
and TRPV1 in the CA3 region.

5. Discussion

5.1. Regulating the Neurotrophic Factors by Doing Exercise in
Epilepsy

Our results showed a significant increase in the ex-
pression of NGF in the CA1 region in the EX, EX+PTZ, and
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Figure 1. The distribution of NGF in hippocampal regions. (A) Immunofluorescent microscopic image of NGF cells, (B) Bar chart of the effect of PTZ and exercise on the
distribution of NGF.

EX-PTZ groups, as well as an increase in the expression of
GDNF in the EX+PTZ group compared to the PTZ group.
Seizures are followed by excessive immune responses and
imbalances in synaptic transmitters (22). Immune activa-
tion by increasing the production of pro-inflammatory cy-
tokines increases the potential for new convulsions (23).
After seizure induction, inflammatory mediators released

from glial cells, including interleukin-1beta (IL-1β), IL-6, IL-
10, and tumor necrosis factor-alpha (TNF-α), increase in the
brain, which directly leads to activation of their pathways
involved in apoptosis through their receptors in neurons
(24). They stimulate convulsions by affecting ion channels,
and neurotransmitter receptors and increasing the perme-
ability of the blood-brain barrier (25). On the contrary,
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Figure 2. GDNF distribution in hippocampal regions. (A) Immunofluorescent microscopic image of GDNF cells. (B) Bar chart of the effect of PTZ and exercise on GDNF
distribution.

long-term and moderate-intensity exercise training (65%
VO2 Max) causes a clear decrease in the level of inflamma-
tory cytokines, including IL-1β and IL-6, in the hippocam-
pus and cerebellum (26, 27), and by improving the inflam-
matory condition and decreasing oxidative stress (28). It
increases the expression of neurotrophic factors in the hip-
pocampus of mice and rats (29).

One of the mechanisms of exercise that leads to the
improvement of brain function is neurotrophic factors,
which play an important role in the survival of neurons

that are affected by the processes of neuronal destruction.
Neurotrophic factors increase the growth and function of
damaged neurons and increase neuronal survival and neu-
rogenesis by preventing nerve cell death (30). Several pre-
vious studies have reported that regular aerobic exercise is
effective in enhancing neuroprotection by increasing NGF
secretion and leading to NGF upregulation (15). Also, in-
creasing NGF secretion has a direct relationship with mem-
ory improvement and an inverse relationship with oxida-
tive stress (31). Four weeks of endurance exercise on a tread-
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mill has been shown that is related to the reduction of the
effects of age-related progressive neurodegenerative dis-
eases such as Parkinson’s by increasing striatal NGF levels
(32). Studies have shown that moderate-intensity treadmill
exercise increases the level of NGF and prevents the apop-
tosis of nerve cells in nerve-damaged mice, and reduces
the death and demyelination of neurons activating P-PL3K
(33). Aerobic exercise can play a significant role in improv-

ing learning, increasing GDNF expression, and reducing
inflammation caused by glial cells (34). Also, GDNF can
have an anti-inflammatory and anti-neurotoxic role. GDNF
leads to a decrease in apoptosis through reducing inflam-
matory factors such as TNF-α and IL-1β and, finally, causes
cell survival of neurons and improves memory and learn-
ing (3, 34).

It has been shown that the content of GDNF in the
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Figure 4. The correlation between protein expression of NGF/GDNF and TRPV1. Scatter plots are shown in the CA1 region (A and B). There is a strong correlation between NGF
and TRPV1 expression, but there was no significant correlation between the expression of NGF/GDNF and TRPV1 in the CA3 region (C and D, respectively).

sciatic nerve (35), substantia nigra (36), and striatum
(37) increases significantly following 12 and 18 weeks of
moderate-intensity exercise. In contrast, two other studies
reported that four weeks of low-to-moderate exercise train-
ing did not affect the protein content of the striatum and
substantia nigra (38) and the GDNF content of the lumbar
spine of rats (39). Therefore, increasing the expression of
GDNF and improving learning can be influenced by the du-
ration of exercise (3). Previous evidence and our findings
show that regular exercise with moderate intensity causes
some kind of adaptation in the antioxidant system, can in-
crease resistance to oxidative stress, and prevent excessive
excitability of neurons. Also, as a strong factor, it can play
a role in cell proliferation of neurotrophic factors and sup-
pression of accelerating factors in the process of neuronal
destruction diseases, including inflammation caused by

the activity of microglia and inhibition of NMDA receptors
(2).

5.2. TRPV1 Receptor Distribution with Exercise Training in
Epilepsy

Our results showed that the increase in TRPV1 expres-
sion in the EX, EX+PTZ, and EX-PTZ groups was significantly
different compared to the PTZ group. It has been found
that TRPV1 receptor protein expression increases as a re-
sult of moderate-intensity exercise. Sensory nerves adapt
to exercise by increasing the expression of the TRPV1 recep-
tor protein (40). There is increasing evidence that exercise
increases NGF and neurogenesis (41). Recent reports have
shown that NGF is upstream of the TRPV1 channel and in-
creased NGF levels facilitate TRPV1 expression (42). On the
other hand, there are also reports that NGF decreases in the

Arch Neurosci. 2023; 10(1):e134555. 7
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DRG of rats with heart failure due to a decrease in muscle
volume (43). At the same time, along with the decrease in
NGF level, a decrease in TRPV1 levels has also been observed,
and the evidence indicates a relationship between these
two neural factors (44).

The relationship between delayed muscle pain and
TRPV1 and the essential role of this receptor in delayed
pain have been reported that usually occurs hours after in-
tense or long-term activities. The results showed that de-
layed muscle soreness after the prolonged contraction was
not increased in mice without TRPV1; however, the level
of mRNA related to NGF increased three hours after mus-
cle activity. These findings indicate that NGF upregulation
is not impaired in the absence of TRPV1. Also, TRPV1 ex-
pression is NGF downstream in delayed muscle pain con-
ditions (45). Due to the prominent role of this receptor
on pain, the TRPV1 channel is one of the therapeutic tar-
gets for pain relief methods, which is done either by de-
sensitization of the channel with an agonist or by block-
ing the channel with the use of an antagonist (46). Dys-
function of the synaptic plasticity of TRPV1 receptors has
been reported in diseases such as Alzheimer’s, Parkinson’s,
and epilepsy (47). Since the role of sports activities in in-
creasing the expression of NGF has been confirmed in sev-
eral reports, it can be concluded that the increase in the
expression of NGF in cell signaling pathways and calcium-
dependent pathways is related to the increase in the ex-
pression of the TRPV1 receptor, which is a cation depen-
dent receptor. From a functional point of view and accord-
ing to the available evidence on the relationship between
TRPV1 and some sports biomarkers, it can be concluded
that the role of this receptor is significant in regulating the
factors involved in energy production. The findings of this
research show that it is possible to consider TRPV1 as a neu-
ral marker in adaptation to exercise.

5.3. Signaling Correlation Between NGF and TRPV1

The results of our study showed a high correlation be-
tween NGF and TRPV1 in the CA1 region. Research results
have shown that among the neurotrophic factors, NGF
plays a more fundamental role in regulating the expres-
sion of TRPV1 and is involved in the expression of TRPV1
in the posterior root ganglion (DRG) (48). Exogenous NGF
increases TRPV1 mRNA content, transport, and presence
in the plasma membrane, as well as sensitivity to cap-
saicin in DRG neurons in a culture medium. Also, NGF up-
regulates TRPV1 during inflammation (49). On the other
hand, in cases where nerve cutting occurs, such as axo-
tomy of the sciatic nerve, downregulation of TRPV1 is seen,
which is probably due to the lack of NGF. It determines
the importance of the presence of NGF on the expression
of TRPV1 (50). The mechanisms through which NGF facil-
itates TRPV1 expression remained unclear. Recently, it has
been shown that NGF activates a small protein, GTPase Ras,

whose activation is essential for the regulation of TRPV1
expression. Ras activation is an important component of
the downstream pathway of inflammatory TRPV1 induc-
tion by NGF. Also, NGF may regulate TRPV1 expression by
modulating the membrane potential, which leads to a de-
polarizing change in the membrane potential (50). In ad-
dition, the role of TRPV1 receptors in epileptogenesis has
been reported. Hippocampal TRPV1 receptors are highly
expressed in people with epilepsy suffering from temporal
lobe epilepsy (51). Functional disorders of TRPV1 receptors
cause changes in seizure induction in an animal model of
tonic-clonic epilepsy (52). In contrast, TRPV1 agonist de-
lays epileptogenesis in the kainic acid model of epilepsy
(53). Therefore, our findings suggest that exercise modu-
lates TRPV1 function in sensory neurons by increasing NGF
expression.

5.4. Conclusions

These findings suggest that increased level of neu-
rotrophins following moderate-intensity exercise may be
involved in the antiepileptic effect of exercise through
modulation of TRPV1 pathway. This study’s findings may
be another emphasis on regulating moderate exercise as
a supplementary treatment for patients who suffer from
epileptic seizures. Also, considering the role of physi-
cal exercise on TRPV1 modulation can point out new ap-
proaches that may lead to the development of a new class
of antiepileptic drugs for clinical applications.

5.5. Limitations

The limitation of this study is that the kind of cells (glia
or neurons) involved in the TRPV1 modulation have not
been distinguished. It seems that more studies in this field
will help understand the mechanisms underlying the ben-
eficial effects of exercise.
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