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Abstract

Background: Sleep apnea is a prevalent sleep disorder, especially in males and older ages. The common diagnostic methods,
including polysomnography (PSG), are expensive, difficult to perform, and time-consuming. Numerous studies are focusing on
developing easy-to-perform methods based on artificial intelligence (AI) for the early diagnosis of sleep apnea. This systematic
review aimed to gather current methods based on the convolutional neural network (CNN) for the diagnosis of sleep apnea.
Methods: Three international electronic databases (PubMed, Web of Science [WoS], and Scopus) were searched from 2010 to October
2023. All studies that have developed CNN-based methods for the diagnosis of sleep apnea and have accomplished the performance
tests were included. Finally, the characteristics of the studies were extracted and summarized.
Results: A total of 36 studies were included in this systematic review. Various physiological signals have been proposed
to detect sleep apnea, including electrocardiogram (ECG), blood oxygen saturation (SpO2), sound signals, respiratory signals,
electroencephalogram (EEG), and nasal airflow. Electrocardiogram was the most frequently used signal in the studies, followed
by SpO2. The highest reported accuracy was achieved by SpO2 or ECG-based methods and with a one-dimensional CNN (1D-CNN)
classifier. Using multiple signals did not necessarily increase the performance of test results.
Conclusions: Diagnostic methods based on CNN can be used only as screening tools or home diagnosis of sleep apnea. These
methods are easy to perform and can only reduce the diagnostic costs and waiting time for a sleep study in special scenarios.
Nevertheless, PSG is still the gold standard for the diagnosis of sleep disorders.
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1. Background

Sleep apnea is defined by the recurrent ceasing
of breathing during sleep, affecting ventilation and
fragmentation of sleep. Consequent restorative sleep
causes excessive sleepiness and tiredness during the
daytime and reduced functionality. The apnea-hypopnea
index (AHI) has been frequently used in studies to
evaluate the severity of sleep apnea or hypopnea based
on events per hour (1). In a previous systematic review,
the prevalence of moderate and severe obstructive sleep
apnea (OSA) based on AHI was estimated to be 6% to 17%
of the general adult population, being more prevalent

in males (2). However, a great proportion of affected
cases remain undiagnosed. It was estimated that 85% of
middle-aged women and 92% of middle-aged men with
moderate to severe sleep apnea are undiagnosed in the US
(3).

Sleep apnea can increase the risk of hypertension
and cardiovascular accidents (4). Although sleep apnea
is associated with a high burden, there is usually a
lack of adequate attention to this phenomenon (5).
Additionally, diagnostic tests, such as polysomnography
(PSG), portable monitoring, and home sleep apnea testing,
are accurate but time-consuming and expensive (6, 7).
Polysomnography, the gold standard for sleep apnea
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diagnosis, involves the recording of various physiological
signals collected from electroencephalogram (EEG),
electrooculogram (EOG), electromyogram (EMG),
electrocardiogram (ECG), and respiratory signals (8).

Due to the large number of mentioned sensors, PSG
might be considered uncomfortable, difficult to perform,
and unavailable for many (9). Many recent pieces of
research aim to introduce easy-to-do and cost-effective
methods and algorithms based on artificial intelligence
(AI) to detect sleep apnea. Artificial intelligence refers
to the ability of computers and systems to perform tasks
that are usually considered to need human intelligence
and mental work, such as decision-making and pattern
recognition (10).

Methods that focus on singular bio-signals are
hot topics in the field of the diagnosis of sleep apnea
using AI. Among multiple AI methods that have been
developed, convolutional neural network (CNN) are
gaining popularity. The convolution neural network is
one of the most effective and successful methods inspired
by the vision system. Convolution neural network was
first developed to classify images (11). Additionally, CNN
automatically detects the significant features of the
data without any human supervision, which is the main
advantage of CNN compared to its predecessors (12).
After that, some studies adapted the concept for signal
classification by employing a one-dimensional CNN
(1D-CNN) network. A two-dimensional CNN (2D-CNN) was
also used in studies that converted the one-dimensional
signal to a two-dimensional input (13). The combination
of CNN and other methods is also gaining popularity (14).

2. Objectives

This systematic review aims to assess the currently
developed methods for detecting sleep apnea using CNN.

3. Methods

The current systematic review is reported based on
the preferred reporting items for systematic reviews
and meta-analyses (PRISMA) guidelines. The targeted
outcomes were the accuracy, sensitivity, and specificity of
CNN-based methods and the type of signals used in the
diagnosis of sleep apnea. For this purpose, all of the studies
that have developed CNN-based methods for the diagnosis
of sleep apnea and have accomplished the performance
tests were eligible for inclusion.

3.1. Search Strategy

Three international electronic databases (PubMed,
Web of Science [WoS], and Scopus) were searched from
2010 to October 2023. This time interval was applied
because, based on a previous systematic review, no studies
have been found before 2010 for CNN-based methods.

The following key terms were used for searching
international databases: (1) “Sleep apnea” or “sleep
apnoea”; (2) “neural network” or “deep artificial neural
network” or “deep learning” or “convolutional neural
network” or “recurrent neural network” or “reinforcement
neural network” (Appendix 1). No limitations were applied
to language or type of study in the search or the selection
process.

3.2. Eligibility Criteria

This review included studies that provided data
on the following subjects: (1) a CNN-based method
was introduced; (2) the method was developed for the
diagnosis or staging of sleep apnea; (3) the study has
provided data on the performance of the method in
diagnostic tests.

This study excluded studies in which (1) they used
methods other than CNN; (2) the accurate signal used was
not defined; (3) the performance of the test (specificity
[SP], sensitivity [SN], and accuracy [AC]) was indicated; (4)
only sleep stage classification was performed; (5) different
types of sleep apnea without comparison to normal were
distinguished; and (6) breathing disorders other than
sleep apnea was diagnosed.

3.3. Screening, Data Extraction, and Quality Assessment

Two researchers independently screened the titles
of all search results and selected the studies for the
abstract screening step. After the abstract screening,
researchers screened the eligible full texts and extracted
the data. A third researcher reviewed the extracted data.
Any disagreements were resolved via consultation with a
fourth reviewer in each stage.

The following information was extracted from eligible
studies: Bibliometric information (name of the first
author and year of publication), the database used or
the setting in which the study was conducted, recording
sensors or signals, window size in seconds, classification
type (apnea, hypopnea, and OSA), classifier type, sensitivity
or recall (%), specificity (%), and accuracy (%).

3.4. Statistical Analyses

Due to the heterogeneity of the included studies, it
was impossible to conduct a meta-analysis. The data on
the SP, SN, and AC of different studies were entered into
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a Microsoft Excel sheet. The plot was created using the R
software (version 4.0.5).

4. Results

Figure 1 depicts the flow diagram of the study selection
process. The titles and abstracts of 659 records retrieved
from online databases were screened after the removal
of duplicates. Fifty-three studies fulfilled the eligibility
criteria for full-text review and were included.

Seventeen studies were excluded as follows: (1) the
full text of 11 studies was not found; (2) 2 studies were on
sleep stages in sleep apnea; (3) 1 study was on breathing
patterns; (4) 1 study was on classification of sleep apnea;
(5) 1 study was on non-apnea sleep arousal; (6) 1 study was
in a language other than English. Finally, 36 studies were
eligible for data extraction.

4.1. Signals for Sleep Apnea Detection

Numerous physiological signals or sensors have
been reported to detect sleep apnea based on a CNN
classifier. In this systematic review, we found 11 different
signals that can be used for CNN-based algorithms
to detect sleep apnea, including ECG, blood oxygen
saturation (SpO2), sound signals (speech and tracheal
sounds), respiratory signals (oronasal airflow and
chest and abdomen movements), EEG, combined
signals, impulse-radio ultra-wideband (IR-UWB), lateral
cephalometric radiographs, and pulse transition time
(PTT) (Table 1). Figure 2 shows the boxplots of the accuracy
of different signals reported in studies.

4.1.1. Signals Based on Electrocardiogram

In electrocardiography, the electrical activity of the
heart is mapped by electrodes connected to the skin.
These electrodes detect any minor electrical changes in
heart muscle during depolarization and repolarization.
Electrocardiogram has been used as a signal for detecting
sleep apnea since the early 2000s (9). Sleep apnea
can affect the ECG through autonomic nervous system
response during sleep (63). Some of these changes include
variations in the amplitude of R waves, inter-beat (RR)
interval, and baseline fluctuation (64). In this systematic
review, of 36 included studies, 16 studies used ECG signals.
The majority of these studies have used the apnea-ECG
database (AED). This database consists of 70 nighttime ECG
recordings (and PSG for some cases) conducted at Philipps
University, Marburg, and Germany that are available on the
PhysioNet site (65).

Alternatively, Banluesombatkul et al. (26) used the
osteoporotic fractures in men study (MrOS) database,

which recorded the PSG of 2 991 individuals of 65 years
or older at 6 clinical centers (65). Different features of
the ECG have been used in this subclass of studies. Heart
rate variability (HRV) and RR interval, which is the interval
between two successive QRS complexes, are frequently
utilized in studies. The RR interval was used by Shen et al.
(16), Wang et al. (28), and Liang and Qiao (23). The time
window used in ECG-based studies ranged from 10 to 60
seconds, and the sensitivity and specificity ranged from
77.6% to 100% and 80.1% to 99.2%, respectively. The highest
accuracy achieved was 99.8% by Liang and Qiao, who used
the RR interval (23). Table 2 summarizes the characteristics
of datasets used in the included studies.

4.1.2. Signals Based on Blood Oxygen Saturation

Since decreases in blood oxygen levels are associated
with apneic events, the SpO2 signal is a useful and
simplified tool to detect these events (66). Blood
oxygen saturation could be used as a single signal or
in combination with other physiological signals to detect
sleep apnea. Databases that are used in this subclass
of studies were AED, the HuGCDN2008, childhood
adenotonsillectomy trial (CHAT), Massachusetts General
Hospital (MGH), sleep laboratory and the sleep heart
health study (SHHS), and St. Vincent’s University
Hospital/University College Dublin Sleep Apnea Database
(UCD). HuGCDN2008 database was collected using the
VIASYS Healthcare Inc. (Wilmington, MA, USA) device in
the University Hospital of Gran Canaria Dr. Negrin. The
database has 70 subjects with PSG recordings in addition
to the diagnosis of sleep apnea by a physician (67). The
CHAT database is composed of PSG studies of 1 900
children, and apneas and hypopneas were scored using
AHI (68, 69). Massachusetts General Hospital and SHHS
datasets consist of in-lab (MGH) and at-home (SHHS) PSG
recordings as part of routine clinical practice consisting
of 10 000 and 5 600 recordings, respectively (65). The UCD
database had 25 recordings with SpO2 signals. Four studies
have used the SpO2 signal as a single signal (11, 36-38), and
two studies have used the SpO2 signal in combination
with airflow and respiration signals (42, 43). In two studies
conducted by Mostafa et al. (11, 36), different window
sizes were tested to get the best accuracy. Overall, the
sensitivity and specificity ranged from 40% to 92% and
90.5% to 99.6%, respectively. It seems that the specificity of
the SpO2 signal in sleep apnea screening is higher than its
sensitivity. Mostafa et al. reached 100% accuracy using the
CCN1D classifier in their study (11).

4.1.3. Signals Based on Respiration

Oronasal airflow and respiratory movements are the
most direct indicators of breathing disorders and were
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Figure 1. Flow diagram of the study selection process

used by six studies (39-45) to detect sleep apnea. Three
studies used nasal airflow as the single signal, and the
remaining used a combination of respiratory signals.

The databases used were the multi-ethnic study of
atherosclerosis (MESA), MGH, and SHHS datasets. The
MESA dataset was collected by the National Sleep Research
Resource (NSRR), which includes PSG recordings for 2
200 participants conducted between 2010 and 2011 (65).
Each patient was labeled as normal, obstructive apnea,
or hypopnea by an expert. By using respiratory signals

for the detection of sleep apnea, the obtained accuracy
ranged from 74.7% to 96.6%. Choi et al. achieved the
highest accuracy in their study, using nasal airflow signal
and CNN1D classifier (41).

4.1.4. Signals Based on Sound

The breathing process produces characteristic sounds
that can be used to detect sleep apnea (70). This principle
was used in three studies. In these studies, tracheal sound,
sleep sound, and speech signals were used (47-49). In
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Figure 2. The boxplots of the accuracy of different signals reported in studies

Table 2. Characteristics of Datasets Used in Included Studies

Dataset Setting Signals Measured Number of Subjects Age (y) Gender BMI/Weight

AED University ECG, PSG for some patients 70 27 - 63 Both 53 - 135 kg

MrOS Clinical centers PSG 2 991 +65 Male -

HuGCDN2008 University hospital PSG, diagnosis of sleep
apnea by a physician

70 18 - 82 Both -

CHAT Multiple clinical centers PSG 1 900 5 - 10 Both Mean: 17.1 kg/m2

MGH Laboratory PSG 10 000 42 - 64 Both 27 - 36 kg/m2

SHHS At home PSG 5 600 55 - 72 Both 24.6 - 30.7 kg/m2

UCD University hospital SpO2 25 Both -

MESA National Sleep Research
Resource

PSG, actigraphy 2 200 45 - 84 Both

EEG dataset University hospital EEG 25 - Both -

Physionet Challenge University hospital PSG 1 985 - Both -

MIT-BIH
polysomnographic
database

University hospital PSG 18 32 - 56 Both -

SHHS2 University hospital PSG 2 651 Both -

Apnea-PPG University hospital PSG, PPG 110 Mean: 45.25 Both

ABC University hospital PSG 49 18 - 65 Both 35 - 45

HomePAP University hospital PSG 243 > 18 Both -

UofC University hospital PSG 974 - Both

Abbreviations: BMI, body mass index; AED, apnea-ECG database; MrOS, osteoporotic fractures in men study; CHAT, childhood adenotonsillectomy trial; MGH,
Massachusetts General Hospital; SHHS, sleep heart health study; UCD, University College Dublin Sleep Apnea Database; MESA, multi-ethnic study of atherosclerosis;
EEG, electroencephalogram; PPG, photoplethysmography; PSG, polysomnography; ECG, electrocardiogram; SpO2 , blood oxygen saturation.

this model, a CNN is trained to distinguish respiration
sounds from environmental noise, and then the trained
model is transferred to recognize respiration sounds in

sleep apnea. All three studies were conducted in hospital
and medical center settings. The sensitivity ranged from
69.7% to 98%, and the specificity ranged from 70.9% to 79%.

Arch Neurosci. 2024; 11(1):e144058. 5
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The best-achieved accuracy in this subclass was 81.63% by
Luo et al. (48).

4.1.5. Signals Based on Electroencephalogram

Sleep arousal due to sleep apnea can be detected via
EEG, which represents sleep arousal as an abrupt shift in
EEG waves (71). Three studies have used this signal, and the
methods were fully convolutional neural network (FCNN),
dense recurrent convolutional neural network (DRCNN),
and multi-scale parallel CNN (MSPCNN) as the classifier,
respectively (50-52). The databases used in these studies
were the EEG dataset of St. Vincent’s University Hospital,
Physionet Challenge, and MIT-BIH polysomnographic
database in that order. The EEG dataset of St. Vincent’s
University Hospital contains polysomnograms and some
other bio-signals of 25 patients. The Physionet challenge is
part of the Physionet/computing in cardiology challenge
2018 and includes PSG data from 1 985 subjects who
were monitored at the MGH for the diagnosis of sleep
disorders (72). The MIT-BIH polysomnographic database,
freely available on PhysioNet, includes 18 whole-night PSG
recordings (65). The highest accuracy was 89.1%, achieved
by Jiang et al. In this study, a sleep apnea detection
framework combined with time-frequency analysis for
EEG signals and an MSPCNN to learn implicit patterns
from time-frequency images were used (50).

4.1.6. Other Signals

Unobtrusive electromechanical film transducer
(Emfit) mattress sensor, PTT, IR-UWB, and lateral
cephalometric radiographs were used by four studies
to detect sleep (56-59). Tsuiki et al. analyzed different parts
of lateral cephalometric radiographs to achieve the best
performance, and the full image got the best results (57).
In this subgroup, sensitivity ranged from 78.1% to 98%, and
the specificity was in the range of 82% to 96%. The highest
performance was achieved by Arslan with 92.8% accuracy
(56).

5. Discussion

In this systematic review, we found different sensors
and signals based on CNN algorithms that have been
used to detect sleep apnea. Electrocardiogram, SpO2, and
respiratory signals were the most utilized signals to detect
sleep apnea. Electrocardiogram was frequently used as the
single source sensor and was the most studied signal in
studies. However, to detect sleep apnea from respiration,
it was more common to combine multiple signals. The
CNN1D classifier was the most frequently used classifier
among various CNN subclasses. The highest accuracy

(100%) was reported by Mostafa, using the SpO2 signal and
CNN1D classifier. In this study, the global classification
of OSA was also reported (11). The 99.8% accuracy was
also achieved by Liang (23) using the RR-interval signal
in ECG and a combination of CNN and LSTM classifiers.
The maximum sensitivity and specificity were achieved by
Erdenebayar et al. (99% each) using ECG signals and CNN1D
classifier (24).

Studies that used ECG signals accomplished the
highest performance in diagnostic tests. However, the
majority of the studies that have used ECG signals were
tested in public datasets, which are probably cleaner than
ECGs in hospital and medical center settings. This could
increase the performance of the algorithms in diagnostic
tests (30-35, 73). Although sleep apnea is primarily a
breathing disorder, respiratory and sound signals were
not as successful as ECG and SpO2 in diagnostic tests. In
some parts, it is because the algorithms based on sound
and respiratory signals are more susceptible to noises
caused by environmental and cardiac sounds (74). The
AED database was the only database in the current study
whose different features (i.e., ECG, SpO2, and respiratory
signals) have been used for detecting sleep apnea in
different studies. Merely considering this database, there
was no superiority of a signal in detecting sleep apnea
over other signals. Additionally, the sleep recordings in
the AED database are annotated per minute for detecting
sleep apnea events (75); however, most of the databases
have annotations per second/sample, which follow the
rules of the American Academy of Sleep Medicine (AASM)
to annotate sleep recordings (76). As respiratory events
can be grouped in clusters, and one sleep minute can
contain more than one apnea/hypopnea, this could affect
the generalization of the results obtained in AED to other
datasets and clinical settings.

Using a combination of respiratory signals did not
improve the performance of the algorithms in diagnostic
tests in comparison with singular SpO2 signals, as usually
one of the signals dominates the algorithm. Further
studies are needed in this field to optimize the algorithms
that use multiple respiratory signals to detect sleep apnea.
However, algorithms that use fewer signals or a singular
signal are preferred for their simplicity and ease of
implementation (77).

A variety of signals were combined in several
studies to detect sleep apnea. For instance, for
the diagnosis of obstructive apnea, Alarcon et al.
combined SpO2, heart rate, thoracic respiratory
effort, and abdominal-respiratory effort; nevertheless,
Jimenez-Garcia et al. combined SpO2 and airflow signal
(54, 55). Since the test is closer to a full PSG by increasing
the received signals, it is evident that the use of combined
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signals could increase the sensitivity and specificity of
diagnosis. However, the use of combined signals might
increase the complexity and cost of the diagnosis and
the susceptibility to noise and artifacts. Therefore, the
trade-off between the performance and the feasibility of
using combined signals should be considered (54, 78).

The convolutional neural network has recently
been utilized to diagnose sleep apnea using
photoplethysmography (PPG). By examining the changes
in the PPG signal that represent the respiratory and
cardiac activities, PPG can be utilized to identify sleep
apnea (60, 61). To determine the stages of sleep and the
arousal events that occur during sleep, PPG can also
record the autonomic nervous system’s modulation.
Photoplethysmography is noninvasive, simple to use, and
inexpensive compared to other sleep apnea diagnostic
techniques. Photoplethysmography, however, has
numerous disadvantages, including a sensitivity to
noise, signal quality, and motion artifacts. Consequently,
it is necessary to evaluate and compare PPG-based sleep
apnea detection techniques to the gold standard, PSG (79,
80). Due to the heterogeneity of the results, it is not clear
yet whether CNN-based algorithms are more successful
in distinguishing apnea and hypopnea together from
normal cases, compared to apnea, hypopnea, or normal
separately. There was also no significant difference
between the accuracy of CNN methods in apnea diagnosis
or determining apnea severity. It was also not possible to
determine whether the accuracy and other results from
online databases are better than in hospital settings. The
reason for the latter is that some confounder factors (e.g.,
classification method, classifier, and window size) are
involved, and a deduction could be possible if any other
factors were the same when comparing the setting in
which the study is conducted.

The majority of the studies used only one database;
some of the subjects in these databases were used for
the training phase, and the remaining were used for
the test phase. The cross-validation between one or
more databases was only applied in a few studies. Using
one database without cross-validation can limit the
generalization of the test results to other populations and
settings (14). This study suggests cross-validation with
another population or database for future studies. This
study also offers to perform a meta-analysis, including
running all mentioned methods on the same hardware,
to achieve a fair comparison in terms of accuracy and
efficiency.

One-dimensional CNN was the most used classifier in
the studies. Combining 2 or more classifiers does not
necessarily increase the performance of the algorithms.
Some algorithms achieved a good performance, although

using a less complex model. To obtain an algorithm with
the highest performance-to-complexity ratio is of special
interest. However, further research in this field is needed
to reach a definitive conclusion.

Sleep apnea disrupts normal brain signaling and
activity. During episodes, lowered oxygen levels and
higher carbon dioxide activate sensors in the brainstem.
This triggers the brain’s attempt to restart breathing.
Areas involved in controlling breathing, such as the
medulla, pons, and amygdala, are impacted (81).
Electroencephalogram directly records these brain
pattern changes. Convolutional neural networks are
suited for EEG analysis since they can automatically
learn the spatial and frequency characteristics distorted
by sleep apnea (53). Signals measured during sleep
studies provide insight into apnea’s neurological effects.
Electroencephalogram specifically demonstrates altered
wave activity during sleep stages and increased waves
with arousal (82). Apneas also affect the timing of signals
between EEG electrodes. Convolutional neural network
architectures successfully capture abnormalities across
electrodes using convolutional and pooling layers,
enabling the detection of patterns tied to disrupted
breathing (83). Research has achieved over 80% apnea
classification accuracy from CNN-processed multi-channel
EEG, demonstrating their ability to accurately interpret
impacted neural data (84).

Low blood oxygen during apneas influences activity
in brain centers controlling breathing. Sensors in the
medulla and pons detect oxygen and carbon dioxide
changes in blood and brain tissue. This disrupts typical
breathing patterns during sleep. Convolutional neural
networks learn features in oxygen data linked to these
impacts, permitting apnea detection (85). Convolutional
neural networks model intricate relationships between
oxygen fluctuations and subsequent brain activity.

Abnormal heart rate and rhythms on ECG also reflect
neural influences. The autonomic nervous system
regulates the heart through pathways originating in
the brainstem. Repeated apneas prompt arousals and
sympathetic changes are observed as arrhythmias
(86). Convolutional neural networks used on ECG can
model these control systems and flag irregular rhythms
signifying disrupted sleep. This offers insight into apnea’s
effects on heart function via the brain-heart connection
(21).

Advances in CNN design have boosted AI’s ability to
identify apnea-related brain changes. Deeper CNNs with
more convolutional filters can model complex EEG/signal
relationships (53). Optimizing CNN structures might
further aid in unraveling apnea’s neural mechanisms
through data analysis (84).

Arch Neurosci. 2024; 11(1):e144058. 7
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This systematic review provides some insights and
suggestions for the future research direction for the
diagnosis of sleep apnea using AI methods based on
the current literature and the gaps identified in this
field. The results of studies in this field can be used
to develop home diagnostic tools for sleep apnea, aid
clinicians in detecting sleep apnea, and provide a decision
support system. Artificial intelligence-based methods
demonstrated good feasibility for outpatient application
and scalability. However, these methods cannot replace
the PSG to date, and PSG is still the gold standard for the
diagnosis of sleep apnea in clinical settings.

The current study had some limitations as follows:
(1) the studies included in this systematic were
heterogeneous and used different sets of signals and
classifiers; as a result, conducting a meta-analysis was
not possible; (2) this review included studies that used
CNN-based algorithms; although the most common and
precise type of classifier, it is not the only one; (3) a great
number of included studies used online databases, which
are public databases from research studies that have met
a standardized procedure for recording, annotations,
and diagnosis and, therefore, are cleaner than data from
clinical settings. As a result, the conclusion regarding the
use of AI-based methods for the screening of sleep apnea
should be interpreted with caution.

5.1. Conclusions

Algorithms based on a CNN classifier and a singular
signal to detect sleep apnea could be recommended as
an easy and time-saving approach for aiding clinicians
in detecting sleep apnea or home diagnosis. For now,
PSG is the gold standard for the diagnosis of sleep
disorders, such as sleep-related breathing disorders, in
clinical settings. Further studies on the most efficient
classifier and cross-validation with clinical settings are
needed before AI-based methods can replace the classic
approaches.

Supplementary Material

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal
website and open PDF/HTML].
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