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Abstract

Over the past two decades, the advancement of analytical examinations like proteomics for investigating neuronal-related

biomarkers has emerged as one of the most important and effective tools for clinical evaluation and prognosis. However, there

remains an unmet need in this area. With advances in quantifying methods and detection in omics research, including

proteomics and metabolomics, the close association of the salivary glands and tears with the nervous system has become

increasingly evident. As noninvasive specimens, saliva and tears serve as attractive substitutes for neuronal biomarkers,

containing numerous proteins and metabolites that represent various ailments in neurodegenerative illnesses like multiple

sclerosis (MS). These noninvasive biomarkers might potentially correlate with susceptibility, severity, and pathogenesis of

neurological disorders and could be utilized in early diagnosis and prognosis. Therefore, tear and salivary proteomics present

novel insights into understanding disease progression and offer personalized treatment options with greater sensitivity. This

approach helps highlight the most relevant experimental outcomes related to tear and salivary biomarkers for multiple

sclerosis.
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1. Introduction

Over recent decades, proteomics has achieved

enormous success in identifying protein biomarkers.

Recent advancements in equipment have facilitated the

investigation of the human biological fluids proteome

(1), serving as a primary source for disease-related

biomarker discovery (2). Among human specimens,

blood, urine, cerebrospinal fluid (CSF), saliva, and tears

are commonly used in proteomic analysis to establish

protein biomarker profiles for human diseases,

particularly central nervous system (CNS) disorders (3).

Among human biological fluids, serum is the most

commonly analyzed because of its noninvasive

sampling and reliable information content on human

disorders. Additionally, cerebrospinal fluid (CSF) is

routinely used for diagnosing specific neuronal

pathologies (1), which is critical for identifying and

detecting potential and sensitive biomarkers in CNS

disorders like multiple sclerosis (MS) (4). However, the

identification of protein biomarkers in CSF is limited

due to the invasive nature of the lumbar puncture

procedure, the risks associated with repeated lumbar

punctures, and the potential for blood contamination

(5). Therefore, CSF is not recommended for routine

proteomic assessment. The use of biomarkers collected
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through non-invasive means serves as an attractive

alternative for detecting neuronal disorders like MS (6).

Multiple sclerosis is a recurrent and progressive
multifactorial chronic inflammatory-autoimmune and

neurodegenerative disorder of the CNS (7), causing
demyelination (8) due to complex interactions among

genetic and environmental risk factors (9). MS presents

with neurological deficits, including sensory and motor
function loss, attributed to demyelination and

subsequent axonal damage (10, 11). Currently, due to the
lack of specific diagnostic methods, an inadequate

understanding of the disease's causes, and the absence

of specific biomarkers for MS, there are numerous

challenges in diagnosing, treating, and monitoring MS

patients. This leads to difficulties in the diagnostic
process, disease management, and a high rate of

misdiagnosis (5, 8). At present, the diagnosis of MS is
based on the McDonald diagnostic criteria, which

include clinical examinations, such as (a) clinical

evaluations, (b) magnetic resonance imaging (MRI), and
(c) detection of oligoclonal bands (IgG) in CSF (12). These

criteria currently allow for the diagnosis of MS (9, 13).
However, the low specificity of MRI and other diagnostic

tests, as well as the unpredictable course and prognosis

of MS, means that none of the present diagnostic
criteria can definitively recognize MS. Despite many

studies, there are still many unknown aspects of MS that
need further evaluation to reflect the probable

pathological processes involved in the development of

the disease (13, 14). Hence, these findings indicate a
fundamental need to identify biomarkers involved in

the prognosis and diagnosis of MS. They emphasize the
urgent requirement for the development of an

authentic diagnostic solution, like proteomics, with

high specificity and sensitivity that would be accessible
to both medical staff and patients (8). A hallmark of

these research efforts is the identification of viable
molecular biomarkers in biological fluids, which could

aid in the differential diagnosis, prognosis, and therapy

of various MS phenotypes (13). Previous studies suggest
that protein components are integral to cellular

functions, with diverse cellular signaling activities.
Using advanced proteomics technologies, such as

biosensors for MS biomarker identification, offers

significant advantages (8), and has led to the promising
investigation of protein biomarkers in human body

fluids (2). Proteomics is a key technique for
investigating the human proteome, which includes the

complete set of cell-expressed or secreted proteins in
human body fluids. It involves characterizing protein

structures and specific functions in physiological and

pathological processes (15). As a rapidly advancing field
in molecular biology, proteomics has the potential to

meet the unmet need for discovering molecular

biomarkers (13) to detect human pathological disorders

and their processes (16). Among human specimens, tears
(17, 18) and saliva (19) are recognized as suitable

noninvasive specimens that contain proteins which
might serve as potential biomarkers for MS. However,

the development of practical and noninvasive detection

methods for neuronal biomarkers, as crucial tools for
clinical use and prognosis evaluation, remains an

unmet need (20). Most critically, the absence of verified
clinical biomarkers is hindering the optimal diagnosis

and treatment of MS (5).

The investigation of novel specific biomarkers

through advancements in proteomics techniques offers

the potential for targeted and personalized therapy,

allowing a proactive approach to managing neuronal

diseases (5). Proteomic analysis of clinical specimens to

assess the diversity and abundance of proteins is a

powerful tool for identifying potential biomarkers

associated with the susceptibility, severity, and

pathogenesis of MS (21). Current research efforts are

focused on investigating sensitive disease biomarkers to

provide accurate diagnosis, prognostic information,

and effective monitoring of disease severity. Therefore,

the proteomic evaluation of saliva, salivary glands, and

tear samples in CNS abnormalities (including MS) can

identify novel biomarker candidates in neuronal

disorders (22). These samples should be used regularly

instead of CSF or CNS tissue for proteome-based

biomarker discovery (23, 24). These biomarkers can be

used as predictors of axonal damage in diagnosis or as

indicators of recurrence of attacks, nerve damage, and

disease progression. The scope of this current review is

to investigate and reconcile the gathered information

on the importance of protein profiles in saliva and tear

fluid proteomics assessments as powerful tools in the

diagnosis of MS. The aim is to encourage further

experiments to identify and validate more authentic

biomarkers (biological parameters) for MS diagnosis.

The research selection was conducted by focusing on

related experimental papers that provided findings on

the use of salivary and tear diagnostic proteomic

biomarkers for the initial diagnosis of MS, using search

engines like Web of Science, PubMed, and Google

Scholar. The newest findings from each research paper

were carefully examined to highlight the prime role

these biomarkers play in salivary and tear diagnostics in

MS disease.

1.1. Saliva

Currently, proteomics experiments identify body

fluids as rich sources of pathological biomarkers (4).
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Saliva is a unique specimen with specific proteins and

metabolic compositions that have clinical applications

for disease diagnosis. It is secreted from the

submandibular, sublingual, and parotid glands, which

are under the direct innervation of the parasympathetic
nervous system (25, 26). Previous research findings

support the notion of the conservation of the salivary

proteome among human subjects. In earlier studies,

evaluating a small number of salivary discriminating

proteins (< 10%) out of over 900 proteins involved in
tissue metabolism, immunity, and regeneration enabled

the distinction among participants (27). Several

sensitive attributes of saliva have verified its value as an

efficient substitute sample in neurological ailments.

Previous research has reported the role of salivary
protein profiles in many aspects, such as prognosis and

diagnosis evaluation, and even for potential age and
gender determination in forensic contexts, including

race/ethnicity (28). Additionally, a large variety of

diseases can modulate the salivary proteome
composition, which may also be detected for forensic

purposes (29, 30). On the other hand, saliva sampling is
a simple, painless, and non-invasive procedure with no

undesirable side effects, requiring less sampling process

without expert training (31, 32) Figure 1.

Moreover, the proteome content of saliva has a high

overlap with blood sample proteins (26, 33).

Furthermore, as a beneficial source of evidence for

detecting immune-mediated inflammatory disorders,

saliva is an incredible specimen for reliable assessment

and storage (29, 34). Thus, saliva can be considered a

reliable noninvasive alternative sample in some

neuroproteomics research and offers a novel, naturally

accessible physiological fluid that can be assessed by
different analytical assays (35). However, some blood or

CNS protein biomarkers do not present in saliva, and

disease-related biomarker candidates may not be

secreted into it (36). Nevertheless, with progress in

omics detection and quantification techniques such as
genomics, proteomics, and metabolomics, saliva has

been verified as a good source of neuronal biomarkers

(31). Salivary proteome examination has progressively

expanded into various biomedical areas, including

medicine, molecular biology, and genetics (37, 38).
Following the advent of omics experiments, research

focused on saliva analysis has significantly increased,

although the human salivary proteome has only been

partially characterized so far (34). The unique properties

of saliva, such as its non-invasive nature and ease of
replication on a large scale, make it an excellent choice

for large-scale clinical trials (39). Additionally, the cost-

effectiveness of manufacturing evaluations related to

the development of most biosensors makes them

attractive for low-resource settings (39). Consequently,

the direct identification of saliva biomarkers may

enable the early diagnosis of abnormalities, leading to

timely treatments (39).

The use of these protocols could lead to simpler,

earlier, and non-invasive diagnoses, potentially

improving the lives of many patients and minimizing

the social and economic burdens of these disorders (40,

41). More broadly, salivary biomarkers have various

promising applications: They could be increasingly

utilized in research settings, such as clinical

laboratories, where they may help identify the

characteristics of specific treatments (39). However,

their current application in clinical practice is limited

due to the lack of standardized methods for salivary

sample collection and evaluation, as well as the absence

of specific clinical parameters that can distinguish

patients from controls based on the assessment of a

single biomarker (39). Previous experiments suggest

that the primary goal of proteomic assessment is to

differentiate between pathological and physiological

states (34). However, a unique proteomic platform to

assay the entire saliva proteome is not currently

feasible. Furthermore, metabolomics research indicates

that the end products of interactions between

environmental factors, proteins, and genes are

concentrated in various abnormality approaches.

Salivary metabolomics is an extremely unique and

sensitive procedure for recognizing different

conditions, making it an effective alternative to routine

serum and tissue-based analyses (39, 42). These

metabolomics experiments combine multiple analytical

techniques to detect various contents that might serve

as novel biomarkers. Therefore, we reviewed the current
status of salivary proteomics and metabolomics, their

future role in monitoring and detecting various

systemic illnesses, their prognosis and diagnostic

efficiency, and the related technologies (42). As

mentioned, the collection of saliva offers several
benefits, such as being stress-free, noninvasive, and

repeatable. Moreover, the direct identification of

salivary biomarkers could provide reliable protocols

that allow for the early diagnosis of neuronal disorders,

potentially leading to timely treatments (39). Salivary
analysis can identify numerous biomarkers of aging,

including a variety of metabolites, proteins, and

modifications to DNA and miRNA (43). The direct

relationship between the salivary glands and the

neuronal system results in these glands' secretions
having a high protein overlap with the nervous system.

This verifies that these noninvasive body fluids are a

useful source of biomarkers that reflect the pathological

physiologies of nervous system disorders (44). Although
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Figure 1. The proteomics procedure of saliva and tears as the noninvasive human sample

many salivary biomarkers for nervous system diseases

are still being investigated (45), saliva proteome analysis

has already been applied to examine its modifications in

immune-mediated inflammatory systemic disorders.

These include cystic fibrosis (46), diabetes mellitus (47),

oral leukoplakia, chronic graft-versus-host disease, oral

squamous cell carcinoma, and Sjögren’s syndrome (48-

51), as well as demyelinating and neurodegenerative

disorders related to aging (39), such as MS (29),

Parkinson’s disease (PD) (52, 53), Alzheimer's disease (the

most frequent form of dementia) (43), amyotrophic

lateral sclerosis, and Huntington’s disease. These

conditions present significant salivary protein

biomarkers that are commonly associated with them

(39), demonstrating the promising potential of

proteomics in biomarker detection and offering novel

insights into the molecular processes underlying

several systemic ailments. For instance, previous studies

suggest that human saliva assessment could provide

valuable information for the prognosis and diagnosis of

various inflammatory immune-mediated skin illnesses

in the near future (34). Moreover, the application of

salivary biomarkers offers a novel diagnostic procedure

that might be useful for distinguishing demyelinating

syndromes (54), predicting disease status, and

monitoring response to treatment. This approach

allows for the selection of the most applicable and

personalized pharmacological treatments. As a result,

salivary analysis is gaining interest as an innovative and

desirable area of research for multiple disorders. For

example, research has demonstrated lower serum levels

of VPS4B, S100-A16, and ARP2/3 in Parkinson’s disease

(PD) patients compared to healthy controls (HC),

confirming a different salivary protein composition in

PD patients. Additionally, lower concentrations of

inflammatory proteins and those involved in exosome
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formation were found in PD patients (55). In the case of

saliva, previous research has recommended that

noninvasive specimens be more deeply analyzed in MS

experiments to discern beneficial proteomic

biomarkers (5). The neuronal damage-associated

proteins in MS patient samples indicated mechanistic

concordance with previously reported CNS disease

models and in vivo knockdown, verifying their probable

value as specific therapeutic targets in MS treatments

(56). Besides being a non-invasive diagnostic tool, the

salivary protein content includes blood proteins

transported from the blood through intra- and extra-

cellular pathways. Therefore, the application of saliva

biomarkers provides a valuable procedure for

evaluating treatment response and monitoring disease

activity in MS (57).

For instance, in MS, human leukocyte antigens (sHLA)
II and sHLA I (58), immunoglobulin free light chains

(FLC) (59), thiobarbituric acid-reacting substances

(TBARS), advanced glycation end products (AGEs),

advanced oxidation protein products (AOPP), Ferric Ion

Reducing Ability of saliva and plasma (FRAS/P), and total
antioxidant capacity (TAC) (60) were identified in select

patient salivary specimens. The analyzed results

represented the turnover impairment and differential

expression of immune response, inflammatory, and

antioxidant mechanism-related proteins like the

cystatin protein superfamily in MS patients compared to

healthy controls (57). Additionally, Manconi et al. (29)

detected 119 salivary proteins from 49 MS patients and

54 healthy controls, using top-down proteomics. Among

these, 23 proteins of the salivary proteomic profiles

showed significant differences between MS patients and

healthy controls (61).

They revealed that lower levels of identified proteins,

such as mono-phosphorylated statherin, cystatin S1, and

mono- and di-oxidized cystatin SN, were present in MS

cases compared to healthy individuals. Additionally,

they illustrated elevated levels of several protein

variants, peptides, and fragments. For instance, fifteen

proteins showed overexpression, including the cystatin

SN P11 → L variant, P-C peptide (Fr.1 - 14, Fr. 26 - 44,

antileukoproteinase, and Fr. 36 - 44), cystatin SN Des1-4,

SV1 fragment of statherin, two proteoforms of Prolactin-

Inducible Protein, and cystatin A T96 → M variant. These

identified proteins in patients correlated with

inflammation and immune response, which are known

aspects of MS pathology (61).

Furthermore, in another study, myelin basic protein

(MBP), a critical factor in the myelin cover (10), was

found to be secreted at lower levels in MS patients with

stimulated saliva compared to healthy controls. This

finding had a remarkable equivalence with its level in

triggered saliva. Hence, MBP represents crucial

diagnostic potential for distinguishing MS patients

from healthy controls and could be considered a

promising biomarker for MS (10). In other MS proteomic

research focusing on saliva, the soluble form of human

leukocyte antigen (sHLA) has been evaluated in MS

patients and healthy controls. It was found that sHLA

class II was overexpressed in patients with Relapsing

Remitting MS (RR-MS), reaching values similar to those

found in CSF (58, 62). Additionally, increased sHLA class

II levels after interferon β1a treatment indicated a

promising response to the drug (62). In contrast, sHLA

class I was undetectable due to low salivary expression

levels (58, 62).

In another valuable study, Kaplan et al. reported the
promising value of immunoglobulin-free light chains

(FLC) in discriminating MS patients in the relapse phase

of the disease. Higher levels of FLC in saliva were

observed both compared to controls and to MS patients

in remission, using semi-quantitative western blot
analysis (59, 63, 64). Furthermore, Karlik et al. evaluated

quantified salivary oxidative stress biomarkers, such as

AGEs and TBARS, which were overexpressed in the

salivary samples of MS patients compared to healthy

controls. However, AOPP levels remained unchanged in

saliva, possibly influenced by circadian rhythm and oral

pathologies (60). Additionally, the authors reported

lower salivary levels of Total Antioxidant Capacity (TAC)

and FRAS/P in MS patients. However, FRAS/P showed a

significant difference compared to healthy controls

(60). Therefore, further experiments are needed to

examine the importance of saliva-detected proteins and

metabolomics in MS treatment response and pathology.

Besides these findings, salivary metabolic profiling has

emerged as a significant means of evaluation, with

metabolic markers aiding in the early diagnosis of

several systemic illnesses (42).

However, it should be acknowledged that current MS

diagnostic criteria are sufficiently accurate to

distinguish between MS patients and healthy controls

(HC), even at early stages of the disease. Instead, the

achievement of biomarkers as an alternative potential

procedure for differential diagnosis among

demyelinating disorders would be more applicable in a

clinical platform. Therefore, future research in the area

of saliva biomarkers should focus on the whole

spectrum of demyelinating disorders. Additionally,

salivary proteomics research in the dermatological field

is still in the early stages. As potential biomarkers for

MS, further research is required to assess the role of
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these identified proteins in MS pathology and treatment

response.

1.2. Tears

Biological methods are considered the most

significant aspect for the authentic diagnosis of human

disorders. However, advancements in proteomic

diagnostic methods have allowed the identification of

innovative biomarkers in human specimens (65). Tears,

as a thin, moist layer covering the ocular surface,

interface with the external environment and are rich in

various components such as lipids, cellular debris,

peptides, proteins, electrolytes, and mucins, which help

preserve the normal status of the ocular surface (66).

Like saliva, tears are easily available, repeatable for

sampling (17), and noninvasive to collect without

difficulties, making them a valuable source of

information related to human disease states (66) (Figure

1).

Researchers have introduced tear fluid as a potential

source of ailment-specific protein-based biomarkers for

human neurological diseases due to its close relation to

other body fluid components and its reflection of CNS

status (67-70). Although proteomic identification has

been challenged by the small volume of tears (65),

limitations such as low amounts (5 - 10 µL) (17), the

presence of high-abundance proteins, high

interpersonal variability in its composition, and

sensitivity to physiological and pathological conditions

(71-73) exist. Despite these limitations, tears are an

optional sample for proteomics in neurological

experiments on a limited scale. Tear examination, as a

less obtrusive method, may help patients avoid lumbar

punctures (1).

Tears provide an interesting resource for biomarker

research due to their close relationship with the CNS

(57). In another notable study, Ornek et al. (74) evaluated

the sensitivity of tear function for neurological

disorders. The findings reported a possible correlation

between neurodegenerative disorders such as MS,

Alzheimer’s disease, Parkinson’s disease, epilepsy (EP),

and Friedreich’s ataxia (FA) (74). Moreover, Belviranli et

al. (75) identified a relationship between MS and the

quality/quantity of tears. Previous studies demonstrated

that as a safe and noninvasive sample, alterations in the

chemical barrier composition, total protein

concentration, and tear flow rate in Alzheimer’s disease

(AD) could be considered a significant biomarker, with

77% specificity and 81% sensitivity (6). Furthermore, in

another study, the application of selected reaction

monitoring (SRM) as a novel targeted proteomics

method led to the discovery of four tear proteins—

dermicidin, lipocalin-1, lactritin, and lysozyme C—that

had the same 81% sensitivity and 77% specificity for

Alzheimer’s disease (AD) (18). In addition to Alzheimer’s

findings, MS, known as a destructive chronic neuronal

disorder of the CNS with significant heterogeneity (76,

77), presents beneficial biomarkers in other specimens

like tears (78-80).

The results of two associated researches reported

that the specificity and sensitivity of oligoclonal IgG

bands in the tears of MS patients are comparable to

those in CSF, while the collection procedure is less

invasive (80, 81). This supports the notion that tears

should be considered a reliable biological fluid for MS

biomarker identification (80). Currently, the detection

of CSF oligoclonal bands (OCBs) is a primary indicator

for predicting and diagnosing MS as a subclinical

inflammatory disease of the CNS (82, 83). OCBs are also

detectable in the tears of MS patients (82); however,

previous research indicates they are not considered

definitive MS biomarkers.

In an interesting experiment, Bachhuber (84)

reported that OCB detection in tear fluid could not be

related to clinical parameters and therefore cannot

replace CSF OCB detection in MS patients. He measured

OCBs in CSF, tear fluid, and serum samples from 22

diagnosed MS patients, finding that tear fluid OCBs were

not specific to MS or other inflammatory diseases (84).

Additionally, two independent proteomic studies

conducted by Salvisberg et al. and Brown et al. evaluated

the tears of MS patients and healthy controls (HC) (17,

85). They reported that among forty-two differential

proteins, only alpha-1 antichymotrypsin was

significantly overexpressed in all experiments (P < 0.05)

(86). Based on these findings and the results of other

research, the authors confirmed that tear proteomics

reflect biological oddities such as abnormal CNS protein

modifications, which correlate with related neuronal

inflammatory states and MS (17, 85). Therefore, the

significant increase in tear alpha-1 antichymotrypsin

production emerges as an invaluable MS biomarker,

potentially replacing traditional lumbar punctures (87).

Based on available reports detailing the molecular

crosstalk between tears and CSF, tears are positioned as

a valuable source for exploring specific and sensitive

neurological biomarkers (57). In another research,

Salvisberg et al. illustrated that among the 42 different

proteins, alpha-1 antichymotrypsin was the only protein

significantly expanded in all experiments (P < 0.05)

between the tears of MS patients and HC, making it an

auspicious biomarker for MS that could substitute

classic lumbar punctures (17).
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Furthermore, several studies investigated the

alteration levels of immunoglobulins (e.g., alpha,

gamma, kappa, and lambda) in tears (17) and found

increased levels of innate immune response-regulating

proteins like calcium-binding cytosolic protein S100,

which plays a key role in modulating macrophage-

mediated inflammation (88). Comprehensive top-down

research consistently found an enhancement in the

abundance of antichymotrypsin in tears and CSF (17, 89,

90). The raised exuberance of heat shock protein, which

functions in response to traumatic stimuli and is

significant for protein folding dynamics (91), has been

illustrated in tears from MS cases (17, 92). Likewise, a

proteomics evaluation of secreted extracellular vesicles

(EVs) in the tears and CSF of MS patients was carried out

by Pieragostino et al. (93). An interesting finding they

illustrated was the transportation of the same protein

from the CNS to CSF and the tears, supporting the role of

EVs in tears as an important diagnostic tool that can be

collected in a noninvasive way (93).

Moreover, another study showed a considerable

increase in microglial and neuronal-derived EVs in the

collected tears of MS patients (94). Therefore, based on

these studies, tear proteomics of MS patients can

guarantee the high precision and sensitivity requisite

for single-tear proteomics examination and biomarker

discovery. The most important issue in the field of tear

proteomics is the limited sample amounts, which

hinder the depth analysis experiments on single-tear

samples. This limitation may contribute to the

identification of low-invasiveness, sustained-

accessibility biomarkers and open novel avenues for the

advancement of personalized diagnosis and therapy

using tear quantitative proteomics (95).

However, additional clinical experiments are needed

to discover and confirm unique and reliable biomarkers

from body fluids and possibly CNS tissue in MS sufferers

(17). Furthermore, beyond proteomics findings, a great

number of metabolic proteins such as mitochondrial

proteins, apolipoproteins, lipids containing choline,

acylcarnitines, free carnitine, and some amino acids

reflect the pathological states of the CNS,

demonstrating their valuable role as potential

biomarkers for MS (96, 97). Another interesting result

from tear lipidomics suggests significant modulation of

30 phospholipids and downregulation of many

sphingomyelins in MS (2). The investigation of the tear

Metabo-lipidome may provide diagnostic and

prognostic biomarkers, improving our understanding

of neuronal disease pathogenesis (65). For instance, the

overexpression of apolipoproteins (A, C, D, and E) was

displayed in MS patient tear samples (17). Specifically,

the increase in apolipoproteins AI and AII and the

downregulation of apolipoprotein D have been

illustrated in tear specimens (17). Moreover,

complement proteins (complements B, C3, and I) were

also identified in tears (17), demonstrating that tears

could be a viable alternative to sampling CSF. Thus, tear

proteomics and metabolomics are expected to play a

strategic role soon, not only by supporting the three

pillars of individualized medicine but also through

valid molecular platforms, noninvasive samples, and

endotype characterization by identifying innovative,

low-invasiveness biomarkers (95). In parallel with

previous research, our gathered information from

several studies also confirms that tears may be a

practical and valuable source of protein and metabolite

biomarker profiles for neuronal dysfunctions,

specifically MS. The identification and validation of MS

biomarkers may allow for the development of a cost-

effective and non-invasive diagnostic screening test.

However, more clinical experiments are needed to

evaluate and identify verified biomarkers in MS patients.

2. Conclusions

This review presents valuable biomarkers, enabling

molecular diagnostics to encourage future experiments

in this direction and pave the way for their clinical

usage. These noninvasive discovered biomarkers may be

potentially associated with susceptibility, severity, and

pathogenesis of neuronal disorders, and might assist in

early diagnosis, prognosis, and a better understanding

of disease progression. Furthermore, salivary and tear

proteomics research is still in its early stages. However,

as potential biomarkers for MS, further research is

required to assess the role of these identified proteins in

MS pathology and treatment response. The application

of salivary and tear proteomics platforms may have

distinct advantages, as they can be self-collected with

non-invasive procedures, leading to the advancement

and verification of new health biomarkers.
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