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Abstract

Neuropsychiatric symptom development has become more prevalent with 270,000 blast exposures occurring in the past 10 years
in the United States. How blast injury leads to neuropsychiatric symptomology is currently unknown. Preclinical models of blast-
induced traumatic brain injury have been used to demonstrate blood-brain barrier disruption, degenerative pathophysiology, and
behavioral deficits. Vascular injury is a primary effect of neurotrauma that can trigger secondary injury cascades and neurode-
generation. Here we present data from a novel scaled and clinically relevant mouse blast model that was specifically developed to
assess the outcome of vascular injury. We look at the biochemical effects and behavioral changes associated with blast injury in
young-adult male BALB/c mice. We report that blast exposure causes focal vascular injury in the Somatosensory Barrel Field cortex,
which leads to perivascular astrocyte reactivity, as well as acute aberrant behavior. Biochemical analysis revealed that mild blast
exposure also invokes tauopathy, neuroinflammation, and oxidative stress. Overall, we propose our model to be used to evaluate
focal blood-brain barrier disruption and to discover novel therapies for human neuropsychiatric symptoms.

Keywords: Traumatic Brain Injury, Blood-Brain Barrier Disruption, Astrocyte Reactivity, Tauopathy, Neuropsychiatric Behavior

1. Background

Neurotrauma causes serious adverse symptoms in sol-
diers and has been linked to behavioral deficits (1). Recent
evidence suggests that blood-brain barrier (BBB) disrup-
tion exacerbates the initial injury and increases inflamma-
tion following neurotrauma (2). BBB disruption can lead
to robust oxidative stress (3), and contribute to persistent
inflammation (4). What is unknown is the relationship be-
tween BBB disruption and subsequent gliosis and tauopa-
thy.

Gliosis following TBI can disrupt important signaling
cascades (5), and may account for the progression of neu-
rodegenerative pathology. Herein, we show evidence from
our clinically relevant mouse blast model that TBI causes
focal BBB disruption, oxidative stress, and neuroinflamma-
tion in the somatosensory barrel field cortex (S1BF). The
S1BF is important because it is linked to temporal behav-
ioral responses and can become disrupted after injury (6).
Furthermore, it has been shown to be a region susceptible
to gliosis following TBI (7). In this paper, we show convinc-
ing evidence that vascular disruption and the subsequent
biochemical events may contribute to a perivascular distri-
bution of reactive astrocytes, as well as acute aberrant be-

havior.

An important component of this cascade is tauopa-
thy. We have recently shown that tau conformational
change occurs in a perivascular distribution (8). Kayed et
al. recently reported tau oligomer formation, neuronal
cell death and cognitive deficits in rodents after TBI (9).
In this paper, we also show tau oligomer formation cor-
related with focal BBB disruption in the S1BF cortex. Fur-
thermore, acute behavioral deficits were observed when
mice were subjected to the elevated plus maze (EPM). Eluci-
dating a link between vascular disruption, tauopathy, and
neuropsychiatric disorders requires further investigation
to discover potential treatment options.

We present Friedlander blast wave curves generated by
our model in order to discuss possible mechanical causes
of the observed injury changes. The impulse of the Fried-
lander wave is important for understanding depth of pen-
etration into tissue (10). Our model is unique in that we
can produce a high peak overpressure over a very short du-
ration compared to other blast injury models (10). Other
rodent models of blast injury have linked tauopathy with
aberrant behavior (11), and vascular injury with oxidative
stress and neuroinflammation (12). Going forward we will
use the clinically relevant table-top mouse model in order
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to further investigate the molecular underpinnings of neu-
rotrauma related neurodegeneration with a focus on de-
veloping innovative treatment solutions.

2. Results

2.1. Mouse Blast Model and Experimental Design

We designed a shock tube model for mice (Figure 1A
and 1B) by scaling down our validated rat model (10). The
new model has a smaller diameter (4 cm) and a longer
driven (15 cm) to driver section (9 cm) ratio to allow con-
formity of the wave upon exit. We subjected mice to a sin-
gle mild blast (~ 20 psi, 0.5 ms; Figure 1C) and euthanized at
24 and 72 hours. The brains were subsequently assessed for
acute vascular injury, glial reactivity, and tauopathy. Prior
to sacrifice the mice were assessed for aberrant behavior.
The experimental design is portrayed in Figure 1D.

2.2. Focal Vascular Disruption and Astrogliosis Observed After
Blast

We peripherally injected 3 kDa texas red dye (TRD) to
image vascular disruption after blast exposure, and sub-
sequently perfused with indocyanine green (ICG) to label
blood vessels. Moreover, TRD and ICG are only circulated
for a relatively small amount of time compared to more
typical Evan’s blue and give a more accurate acute depic-
tion of clinical BBB physiology (13). We observed TRD dis-
tribution (Red) in the third and lateral ventricles, but also
in the ipsilateral S1BF cortex, outlined by the white box, for
all five mice at 72 hours post-blast (Figure 2A). No signifi-
cant changes were seen at 24 hours (data not shown). We
also found the 50 kDa ICG to distribute in a similar pattern
to TRD after blast injury (Figure 2A, bottom). TRD distri-
bution in the S1BF cortex seemed highest at 72 hours post-
blast (Figure 2B). Astrocyte immune-reactivity was also ob-
served in the S1BF cortex of slides adjacent to Figure 2B (Fig-
ure 2C). These data suggest that blast causes BBB disrup-
tion and may indicate the release of pro-inflammatory fac-
tors.

2.3. Blood-Brain Barrier Disruption Observed in the S1BF Cortex
After Blast

TRD distribution was observed in a diffuse pattern
within the S1BF cortex of TBI mice at 72 hours post-blast
(Figure 3A). Interestingly, under high magnification, we ob-
served 3 kDa TRD (Figure 3B) to distribute in a similar pat-
tern to 50 kDa ICG-albumin (Figure 3C) as outlined by the
white box in Figure 3A. TRD distribution was observed in a
punctate pattern within blood vessels and brain ventricles
of SHAM mice (Figure 3D). The white box outlines punctate
TRD (Figure 3E) and ICG (Figure 3F) within intact brain ves-
sels of SHAM mice.

2.4. Robust Astrocyte Reactivity Observed in the S1BF Cortex Af-
ter Blast

In a slide adjacent to Figure 3A, robust astrocyte reac-
tivity was observed in the S1BF cortex of blast mice at 72
hours (Figure 4A). The white box in Figure 4A outlines the
S1BF region showing robust GFAP staining after blast (Fig-
ure 4B). The white box in Figure 4B outlines the swelling of
an astrocytic process after blast (Figure 4C). In a slide adja-
cent to Figure 3D, weak GFAP staining was observed in the
S1BF cortex of SHAM mice (Figure 4D). The white box in Fig-
ure 4D outlines the S1BF region showing weak GFAP stain-
ing in SHAM mice (Figure 4E). The white box in Figure 4E
outlines the weak GFAP staining of astrocytic processes in
SHAM mice (Figure 4F).

2.5. Blast Exposure Increased GFAP Expression in the S1BF Cor-
tex

A significant difference in GFAP mRNA abundance was
observed in the ipsilateral S1BF region after blast (F (2, 12) =
5.73; P < 0.05). We revealed a significant increase in GFAP
mRNA abundance at 24 hours post-blast when compared
to control animals (q = 3.36; P < 0.05) (Figure 5A). One-
way ANOVA with Dunnetts post-hoc values represented as
mean ± sem. A significant difference in protein expres-
sion of GFAP was observed in the ipsilateral S1BF region af-
ter blast (F (2, 12) = 4.42; P < 0.05). We measured a sig-
nificant increase in GFAP protein expression at 72 hours
post-blast when compared to control animals (q = 2.68; P
< 0.05) (Figure 5B). One-way ANOVA with Dunnetts post-
hoc values represented as mean ± sem. The limited GFAP
expression at 24 hours post-blast, but substantially in-
creased gene expression is consistent with previous data
from our rat model (10), where peak protein expression
was also observed at 72 hours post-blast. Under high mag-
nification, we also observed reactive astrocytes along ICG-
labeled blood vessels within the S1BF region of mice at 72
hours after blast exposure (Figure 5C).

2.6. Markers of Oxidative Stress and Neuroinflammation In-
creased After Blast

Oxidative stress is an important component of the
inflammasome, which contributes to neurodegeneration
following TBI (14). We observed an increase in NOX4 flu-
orescence within the ipsilateral S1BF cortex after blast ex-
posure (Figure 6A). We measured a significant increase
in NOX4 total cell fluorescence in mice at 72 hours post-
blast compared to controls (t = 4.07; P < 0.001) (Figure
6B). We also observed an increase in fluorescence of pro-
inflammatory marker iNOS in the ipsilateral S1BF cortex af-
ter blast (Figure 6C). We measured a significant increase
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Figure 1. Mouse Blast Model, Freidlander Curve and Experimental Design

A, schematic shows mouse placed into PVC pipe with the blast wave impacting the right side of the head (S1BF cortex); B, photograph of mouse shock tube model; C, classic
Freidlander curve produced by the blast wave with a peak overpressure of ~ 20 psi for a duration of 0.5 ms; D, experimental design.

Figure 2. Blast Induced Blood-Brain Barrier Disruption in the S1BF Cortex

A, a coronal brain slice imaged at 1.25x shows Texas Red conjugated dextran 3 kDa distribution within the S1BR region (outlined by white box) at 72 hours post-blast; scale bars
= 500µm; B, Bottom panels are from white box above imaged at 6.3x to show vascular disruption: TRD distribution (left), ICG distribution (middle), merged (right); scale bars
= 100µm. Brain slices imaged at 3.2x show increased TRD distribution in the S1BF region at 72 hour post-blast compared to SHAM and 24 hours post-blast animals; Scale bars =
200 µm. Arrows demarcate vascular disruption within the ipsilateral S1BF region; C, adjacent brain slices imaged at 3.2x show increased GFAP fluorescence in the S1BF region
at 72 hour post-blast compared to SHAM and 24 hours post-blast animals; scale bars = 200 µm. Arrows demarcate astrocyte reactivity within the ipsilateral S1BF region and
near grey/white matter junctions; LV = lateral ventricle; 3V = third ventricle; TRD = texas red dextran; ICG = indocyanine green; GFAP = glial fibrillary acidic protein.

in iNOS total cell fluorescence in mice at 72 hours post-
blast compared to controls (t = 4.18; P < 0.001) (Figure 6D).
Standard t-test with two-tailed critical values represented
as mean ± sem.

2.7. Blast Increased mRNA Abundance of Pro-Inflammatory
Markers

Markers of neuroinflammation are commonly ob-
served after TBI (12, 15). Recently, our group has also shown
an upregulation of pro-inflammatory markers in a rat
model of blast injury (16). A significant difference in iNOS

mRNA abundance was observed in the ipsilateral S1BF re-
gion after blast (F (2, 12) = 5.60; P < 0.05). We revealed a
significant increase in iNOS mRNA abundance at 24 hours
post-blast when compared to control animals (q = 3.21; P
< 0.05) (Figure 7A). A significant difference in TNFα mRNA
abundance was also observed in the ipsilateral S1BF region
after blast (F (2, 12) = 4.53; P < 0.05). We revealed a signifi-
cant increase in TNFα mRNA abundance at 24 hours post-
blast when compared to control animals (q = 2.91; P < 0.05)
(Figure 7B). One-way ANOVA with Dunnetts post-hoc values
represented as mean ± sem.
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Figure 3. Vascular Injury Observed in the Ipsilateral S1BF Cortex After Blast

Brain slice from a A, TBI mouse shows TRD distribution in the S1BF region compared to D, SHAM mouse brain slice; panels A, D both imaged at 2.5x, scale bar = 200 µm. White
box in panel A, outlines rightward panels showing vascular disruption with B, TRD distributed in a similar pattern to C, ICG-albumin; White box in panel D, outlines rightward
panels showing intact blood vessels E, with TRD and F, ICG-albumin; panels B, C, E, F, all imaged at 12.6x, scale bars = 50 µm. TRD = Texas red dextran; ICG = indocyanine green.

2.8. Oligomeric Tau Observed in the Ipsilateral S1BF Cortex After
Blast

A novel, oligomer-specific, tau antibody was produced
to better understand the role of tau pathology through-
out disease progression (17). We discovered the oligomer-
specific antibody (T22) within the ipsilateral S1BF cortex af-
ter blast. We revealed an increase in T22 fluorescence at 72
hours post-blast (Figure 8A). We measured a significant in-
crease in T22 total cell fluorescence at 72 hours post-blast
compared to sham controls (t = 5.59; P < 0.001) (Figure 8B).
Standard t-test with two-tailed critical values represented
as mean ± sem.

2.9. Aberrant Behavior Observed in Mice After Blast Exposure

Behavioral testing, including the EPM, can activate the
S1BF region in rodents (18). Moreover, injury to the S1BF re-
gion in rats was shown to produce an anxiety-like behavior
as measured in the EPM (19). As such, we sought to mea-
sure impulsive-like behavior and disinhibition in mice af-
ter exposure to our blast model. We revealed a significant
increase in percent time spent in the open arm of the EPM

in mice at 72 hours post-blast compared to SHAM animals (t
= 2.61; P < 0.05) (Figure 9A). We found no difference in total
movement between 72 hour and SHAM animals (t = 0.29; P
> 0.05) (Figure 9B). Standard t-test with two-tailed critical
values represented as mean ± sem.

3. Discussion

TBI has been associated with astrogliosis in subcorti-
cal regions (20). It has been proposed that this robust as-
trogliosis may be due to microvascular damage and acute
disruption of the BBB (21). BBB disruption has been well re-
ported in more severe TBI models, but its role in mild TBI is
poorly understood (22). Herein we show that BBB disrup-
tion occurs at 72 hours following mild blast TBI. Interest-
ingly, the mRNA increase occurred at 24 hours. The sub-
sequent 72-hour increase in GFAP protein expression that
coincides with the BBB disruption may potentially be due
to the initial inflammatory cytokine burst triggered post-
injury. The vessels with increased permeability showed ro-
bust GFAP fluorescence, suggesting astrogliosis. A similar
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Figure 4. Robust Astrocyte Reactivity Observed in the Ipsilateral S1BF Cortex After Blast

Brain slice from a TBI mouse adjacent to the TRD slices from Figure 3A shows robust GFAP staining in the A, S1BF region compared to an adjacent brain slice from Figure 3D
from D, a SHAM mouse; A and D, both imaged at 2.5x, scale bar = 200 µm; White box in panel A outlines panel B showing astrocyte reactivity with GFAP at 20x, B, scale bar
= 30 µm; white box in panel B outlines panel C showing robust astrocytic processes at 63x, C, scale bar =10 µm; White box in panel D outlines panel E showing weak GFAP
staining at 20x, E, scale bar = 30 µm; white box in panel E outlines panel F showing weak GFAP staining at 63x, F, scale bar =10 µm. GFAP = glial fibrillary acidic protein; DAPI =
4’,6-diamidino-2-phenylindole (nuclear stain).

Figure 5. Increased GFAP Expression Measured Following Blast Injury

A, a significant increase in GFAP mRNA abundance was measured in the ipsilateral S1BF region at 24 hours post-blast (*P < 0.05 vs SHAM); B, one-way ANOVA, Dunnetts post-
hoc. Mean ± sem. n = 5. A significant increase in GFAP protein expression was also observed in the ipsilateral S1BF region at 72 hours post-blast (*P < 0.05). One-way ANOVA,
Dunnetts post-hoc. Mean ± sem. n = 5. Image from a TBI brain slice shows blood vessels (marked by residual ICG-albumin after washout) surrounded by robust astrocyte
reactivity (GFAP); imaged at 20x, scale bar = 30 µm. Arrow demarcates inset; imaged at 63x.

astrogliosis distribution was also observed in another ro-
dent model of TBI (23). The Friedlander wave generated
by our model produces a short duration impulse (area un-
der the curve). This is important for two reasons: 1) with a

freely mobile head the mouse’s skull and brain undergoes
extensive acceleration/deceleration from the propulsion
of the wave and 2) the wave may directly penetrate through
the skull causing injury at density gradients such as the
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Figure 6. Increased NOX4 and iNOS Cell Fluorescence Observed After Blast

A, NOX4 fluorescence; B, and iNOS fluorescence; C, were both elevated in the ipsilateral S1BF region. A significant increase in NOX4 total cell fluorescence was measured at 72
hours post-blast (***P < 0.001 vs SHAM). A significant increase in iNOS total cell fluorescence was also measured at 72 hours post-blast (***P < 0.001 vs SHAM) (D). Two-tailed
Standard t-test. Mean ± sem. n = 5.

Figure 7. Pro-Inflammatory Gene Abundance Elevated After Blast Injury
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A, A significant increase in iNOS mRNA abundance was measured in the ipsilateral S1BF region at 24 hours post-blast (*P < 0.05 vs SHAM); B, A significant increase in TNFα
mRNA abundance was also observed at 24 hours post-blast (*P < 0.05 vs SHAM). One-way ANOVA, Dunnetts post-hoc. Mean ± sem. n = 5.

Figure 8. Oligimeric Tau Observed in the S1BF Region After Blast

A, blast exposure revealed an elevated fluorescence of T22 (oligomeric tau); B, A significant increase in T22 total cell fluorescence was measured at 72 hours post-blast (*P <
0.001 vs SHAM). Two-tailed Standard t-test. Mean ± sem. n = 5.

cerebrovasculature. Further work is warranted in collab-
oration with our physics colleagues to determine the true
extent of wave penetration through the skull.

The characteristic finding of chronic traumatic en-
cephalopathy is neurofibrillary tau tangles (24, 25). Our
group previously reported tau hyperphosphorylation in a

perivascular distribution following TBI in non-transgenic
rats (26). Ojo et al. recently found reduced blood flow, glial
reactivity, and oligomeric tau formation in tau transgenic
mice after repetitive TBI (27). In this paper, we show tau
oligomer formation adjacent to regions of astrogliosis and
BBB disruption in non-transgenic mice after blast injury.
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Figure 9. Aberrant Behavior Was Observed in Mice After Blast Injury

A, A significant increase in the time spent in the open arms of the EPM was observed
at 72 hours post-blast (*P < 0.05 vs SHAM) (). Track plots from AnymazeTM are shown
below to provide a clear visual representation of the mouse’s behavior during the
EPM trials; B, no significant difference was observed in total movement at 72 hours
post-blast (P > 0.05). Two-tailed Standard t-test. Mean ± sem. n = 10.

This finding is important in that tau oligomers and tau hy-
perphosphorylation for human TBI specimens have been
shown to be perivascular in distribution (28, 29).

Recent evidence suggests that pathologic tau plays
an active role in disease progression (30). Secondary in-
jury cascades are activated in conjunction with these tau
changes. We have previously shown that endoplasmic
reticulum stress and oxidative stress contribute to long-
term tau hyperphosphorylation changes and are activated
simultaneously following neurotrauma (8, 31). Further-
more, the interaction between endoplasmic reticulum
stress, oxidative stress, and neuroinflammation is a topic
of growing importance in the field of neurotrauma (16).

Secondary injury cascades and tauopathy may con-
tribute to aberrant behavioral changes (32). One of the
most well characterized behavioral changes in relation to
TBI is impulsivity. Impulsivity is a primary presenting
symptom in warfighters exposed to blast TBI (11). In this
paper, we observed a significant increase in open arm ex-
ploratory behavior, without an increase in total distance
traveled on the EPM. Going forward it will be critical to elu-
cidate the molecular underpinnings responsible for this

aberrant behavior. The mouse blast model provides the
opportunity to investigate causative mechanisms for aber-
rant behavior with genetic manipulation.

Modeling cognitive behavior in rodents relies on func-
tional performance. In this paper, we observed robust
histopathologic changes in perivascular regions of the
S1BF. It has also been reported that TBI can contribute to ni-
grostriatal damage (33). Cognitive deficits have also been
observed in a model of diffuse axonal injury (34), and blast
injury (11). Herein, we utilized the EPM to evaluate aberrant
behaviors associated with blast injury. In future investiga-
tions, we plan to investigate functional deficits and corti-
cal connectivity after blast injury. It is interesting to note
the injury to the S1BF cortex, and the subsequent behav-
ioral deficits observed. The aberrant behavior we observed
following neurotrauma may be the result of dysfunctional
cortical circuitry and warrants further investigation.

We have previously shown behavioral changes in rats
at acute time points after single TBI (33) and repeat TBI
(16). In addition, Kondo et al. also observed impulsive-
like behavior in mice after severe rotational acceleration
TBI (35). These results suggest that the acute injury we ob-
served in the S1BF region may be associated with impulsive-
like behavior. It is also interesting to point out that this
behavior seems to be acute. The cortical circuitry should
be further examined between the orbital frontal cortex
and S1BF region to determine the underpinnings of the
impulsive-like behavior. The ultimate goal is to find ther-
apeutic targets that can be successfully targeted clinically.
These interventions have broad clinical utility for warfight-
ers, athletes, and those suffering concussions from falls
or motor vehicle collisions. Such pharmaceutical options
must have well-known efficacy in targeting secondary in-
jury cascades, but more importantly be able to provide
symptomatic improvement that is maintained over time.

One of the most important considerations will be the
ability to detect subtle improvements with advanced imag-
ing. Advanced imaging modalities are now being used to
evaluate the positive benefit of future therapeutics longi-
tudinally (36). Diffusion tensor imaging has also become
a valuable tool for the detection of brain structure abnor-
malities after blast injury (37, 38) In order to continue to
improve these imaging modalities; it is imperative that the
key secondary injury pathways are well characterized in
pre-clinical models. In order for this to occur, it will be nec-
essary to determine the number and interval-between in-
juries that causes neurodegeneration (26). Furthermore,
characterization of the interplay between secondary in-
jury cascades must be well elucidated, which was the pri-
mary focus of this paper.
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4. Conclusions

Blast TBI continues to be a significant problem with
limited diagnostic or treatment solutions. In this paper,
we present compelling evidence that blood brain barrier
disruption and tauopathy may contribute to behavioral
deficits following blast TBI in BALB/c mice. The vascular
injury was complemented with astrocyte reactivity, oxida-
tive stress, and neuroinflammation. The focal injury ob-
served in the S1BF region may have led to the aberrant be-
havior observed with the EPM. We will continue to investi-
gate the physiological pathology of neurotrauma to better
diagnose injury progression and ultimately develop key
therapeutic agents to help treat patients.

5. Experimental Procedure

5.1. Animals

Thirty (30) male BALB/c mice (Charles River) at 2 - 3
months of age were used in this study. The West Virginia
University animal care and use committee approved all
procedures involving mice. Mice were acclimated for 1
week prior to use and housed under 12 hour light/dark con-
ditions with food and water available ad libitum. Animal
experiments were performed according to the principles
of the guide for the care and use of laboratory animals.

5.2. Chemicals and Reagents

Texas red conjugated dextran (3 kDa) (TRD) was pur-
chased from Molecular Probes-Life Technologies (Carlsbad,
CA). Indocyanine Green (ICG) was purchased from Sigma
Aldrich (St. Louis, MO). Bovine Serum Albumin was pur-
chased from Santa Cruz (Dallas, TX). All chemicals and
reagents used were of analytical grade and were used as
supplied.

5.3. Blast Exposure

Blast exposure was induced as previously described
(10). Briefly, a 0.003” polyester membrane was fastened
between two steel tubes (Driver and Driven sections; See
Figure 1A). Nitrogen gas filled the Driver section until
the membrane ruptured and expelled a mild blast wave
through the Driven section and out of the tube exit (~ 20
psi, 0.5 ms duration; See Figure 1B). The animal’s head was
placed perpendicular to the tube exit (~ 2cm), with the
right side being exposed to the mild blast wave. Follow-
ing blast exposure, mice were returned to a holding cage
equipped with a homeothermic heating pad. Once basic
reflexes were restored, mice were returned to their home
cage. No mortality was observed after this blast intensity.

5.4. Tissue Preparation

Mice (n = 15) used for biochemical analysis were euth-
anized and their brains were rapidly removed in an ice-
cold HaltTM protease/phosphatase inhibitor cocktail mix
(Thermo Scientific). The ipsilateral S1BF was dissected out,
halved, and submerged in isopentane (-65°C), and stored
at -80°C for later measurement of protein expression and
mRNA abundance. Mice (n = 15) used for vascular per-
meability assessment and immunohistochemistry (IHC)
were first anesthetized with ketamine/xylazine (100 and 8
mg/kg respectively). To examine vascular permeability we
injected 3 kDa TRD (5 µg/g) into the femoral vein at 24 and
72 hours after blast exposure. After 10 minutes of TRD cir-
culation, we transcardially perfused 50 kd ICG/albumin (5
and 11 µg/g respectively) at rate of 5 mL/min for 2 minutes
to washout TRD and label blood vessels. Following perfu-
sion, brains were removed and submerged in isopentane
(-65°C) and stored at -80°C for IHC preparation and fluores-
cence imaging.

5.5. Quantitative Real-Time Polymerase Chain Reaction

S1BF tissue for gene analysis was homogenized in
TRIzol® reagent (Thermo Scientific) and confirmed for
quality (1.8 - 2.1 absorbance ratio). Reverse transcrip-
tion was conducted and real-time PCR analyses were per-
formed on cDNA using the oligonucleotide primer for
GFAP (Mm01253033_m1), iNOS (Mm00435175_m1), TNFa
(Mm00443258_m1), and 18s rRNA (Hs99999901_s1; en-
dogenous control) (Thermo Scientific). Changes in mRNA
abundance were determined by the ∆∆Ct method with a
threshold cycle value of 0.2 normalized to 18s rRNA.

5.6. Immunoblotting

S1BF tissue for protein analysis was sonicated in 1%
SDS and Western blot analysis was performed as previ-
ously described (39). A rabbit anti-GFAP monoclonal an-
tibody (1:1000), and a rabbit anti-β-actin monoclonal an-
tibody (1:10,000) (Cell Signaling) were used with a sec-
ondary antibody IRDye® 800CW (goat anti-rabbit) (LI-COR
Biosciences). Images were collected using the odyssey clas-
sic infrared imaging system (LI-COR Biosciences). Images
were converted to grey scale, and detected bands were
quantified using image studio lite software (LI-COR Bio-
sciences). Bands were normalized toβ-actin values to mea-
sure relative intensity.

5.7. Immunohistochemistry

Whole brains from mice were mounted on a Leica
CM3050S cryostat (Leica Microsystems) set to -20°C. Coro-
nal sections were sliced at a thickness of 20 µm and
mounted onto glass slides for all IHC staining as previously
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described (8). Three immediate adjacent sections of 20µm
were cut per each slide. Briefly, brain slices were circum-
scribed, and incubated overnight with primary antibod-
ies: GFAP (Cell Signaling); Oligimeric tau (T22; kindly gifted
by Dr. Rakez Kayed); NADPH-oxidase 4 (NOX4; Santa Cruz);
and inducible nitric oxide synthase (iNOS; Santa Cruz). The
next day, an Alexa Flour® secondary antibody (Invitrogen)
was applied to slides for 3 hours, and coverslip mounted
with Vectashield® 4’,6-diamidino-2-phenylindole (DAPI)
nuclear counterstain (vector).

All Images were acquired from the ipsilateral S1BF re-
gion (10 slides per animal). Antibody-stained fluorescence
images were acquired using a confocal microscope (Z1 Axio
Observer; Zeiss, Oberkochen, Germany). TRD and ICG fluo-
rescence images were acquired using a stereomicroscope
(Olympus MVX10; Olympus, Center Valley, PA) equipped
with a 0.5 NA 2 × objective and a monochromatic cooled
CCD scientific camera (Retiga 4000R, QIMaging, Surrey,
BC, Canada). Texas red fluorescence was imaged using a
DsRed sputter filter (excitation/band λ 545/25 nm, emis-
sion/band λ 605/70 nm and dichromatic mirror at λ 565
nm) (Chroma Technologies, Bellows Falls, VT).

For antibody-stained fluorescence quantification, 10
distinct cells with clear morphology were randomly se-
lected per slide, outlined, and measured with ImageJ soft-
ware (NIH) by an observer blinded to experimental group.
Density was adjusted per mean area to give total cell fluo-
rescence normalized to background.

5.8. Behavior on Elevated Plus Maze

Behavior was assessed in mice using the elevated plus
maze (EPM). Increased time spent in the open arms was
considered a sign of impulsive-like behavior in the rodent
(16, 40, 41). The EPM was set at a height of 60 cm above
the floor. The two open arms intersected perpendicular
to the two closed arms. Each arm was 58 cm × 5 cm.
The closed arms were encased by black siding 15 cm tall.
Each mouse was placed in the middle of the EPM facing an
open arm and tracking was performed for 10 minutes us-
ing AnyMazeTM software (Stoelting, Wood Dale, IL), which
pinpointed the location of the mouse’s head and body con-
tinuously throughout the testing trial.

5.9. Statistical Analysis

Data comparing three groups were analyzed using a
one-way analysis of variance (ANOVA) followed by Dun-
nett’s post hoc tests. Data comparing two groups were an-
alyzed using a Standard t-test with two-tailed critical val-
ues corresponding to P < 0.05. Statistical analyses were
performed using Graph Pad software (San Diego, CA). All
data are reported as the average standard error of the mean

(sem). Sample sizes were determined using a power analy-
sis with an α of 0.05, a β of 0.2, and a sample effect of 0.4
for behavioral data and 0.3 for all other data (DSS Research
Power Analysis). P < 0.05 was considered significant for all
data.
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