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Abstract

Background: Currently, the use of xenogeneic and allogeneic compounds in the treatment of musculoskeletal diseases is

common. Repairing bone and cartilage remains a significant challenge for orthopedic surgeons. One of the principal goals of

tissue engineering is the development of appropriate scaffolds that can promote tissue regeneration. Various cells and genes

are involved in bone and cartilage regeneration, and new scaffolds can induce these processes during osteoregeneration.

Objectives: The aim of this study is to evaluate the effects of umbilical cord blood stem cells (USCs) and platelet-rich fibrin

(PRF) using acellular scaffolds in the repair of knee defects in rabbits.

Methods: In this study, the femoral patella of 12 male New Zealand rabbits was drilled, and they were divided into four groups:

(1) control (rabbits with femoral defects), (2) acellular osteochondral (AO), (3) AO + PRF, and (4) AO + USCs / platelet-rich fibrin.

Different scaffolds were implanted into their knees, and after six months, histological evaluations were conducted. To further

investigate the effects of scaffolds on bone and cartilage, gene expression levels of Col 1, Col X, Runx2, SOX9, and ALP were

measured using real-time PCR.

Results: All the implanted materials contributed to knee repair. In terms of statistical analysis, the use of USCs and platelet-

rich fibrin with natural scaffolds such as Acellular Osteochondral provided better results for repairing bone and cartilage. The

evaluation of specific bone regeneration genes (COLI, RUNX2) and the histological results from the implanted site in

experimental osteochondral defects indicated that the most effective knee repair occurred in the group treated with cell-free

osteochondral scaffolds, USCs, and platelet-rich fibrin.

Conclusions: This study demonstrates that the combination of biomaterials and xenografts can accelerate the regeneration

process.
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1. Background

Repairing massive bone and cartilage loss remains a

significant challenge for orthopedic surgeons. The

regeneration of both cartilage and bone has proven to

be difficult due to their distinct physiological structures
and functions (1). Most defects are typically caused by

factors such as physiological bone resorption secondary

to tooth loss, trauma, bone pathologies, or infections,

leading to osteochondral (OC) defects (2).

Osteochondral defects affect the superficial cartilage

region, intermediate calcified cartilage, and

subchondral bone, severely impacting patients' health

and quality of life (3). One of the key objectives of Bone

Tissue Engineering (BTE) is to design biodegradable

scaffolds with appropriate porosity that integrate

natural elements and molecular cues to foster tissue

regeneration (4). Umbilical stem cells (USCs) have

shown potential in promoting regeneration. Recent

advancements in strategies for isolating, expanding,
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and shortening the timing of USC engraftment have

significantly enhanced transplantation efficacy (5).

Bone formation consists of a series of complex events

during the differentiation of mesenchymal stem cells

into osteoblasts. Bone morphogenetic proteins (BMPs)

play a crucial role in osteoblast differentiation by

promoting the production of bone-specific matrix

proteins (6). BMP-2, a key growth factor in the BMP

subfamily, regulates osteoblast differentiation by

stimulating osteoblast-related transcription factors,

including runt-related transcription factor 2 (Runx2),

alkaline phosphatase (ALP), Collagen I (Col 1) (7),

Collagen 10 (Col X) (8), and SOX9 (9, 10).

In the last two decades, several therapeutic

approaches have been explored for bone regeneration,

including scaffold-free and cell-based methods, as well
as advanced treatments combining cells with various

biomaterials (11). Biological scaffolds, derived from

decellularized tissues and organs, have garnered

significant attention because they can provide

mechanical and chemical signals that promote cell
attachment and differentiation in tissue regeneration

(12). These scaffolds are influenced by both physical and

procedural decellularization factors (13). Non-synthetic

polymers, such as collagen, chitosan, starch, hyaluronic

acid, and alginate, tend to have weaker and softer
structures compared to ceramics but are recommended

due to their flexibility and ability to conform to various

shapes (14). Moreover, naturally sourced polymers can

protect and guide cells during multiple stages of their

proliferation, thanks to the presence of specific
molecular domains, leading to biological interaction

between the scaffold and the host tissue (7, 15).

Platelet-rich fibrin (PRF) is considered a platelet

product and fibrin network that contains growth

factors, cytokines, and cells. These factors are gradually

released over time, making PRF useful as a biological
membrane in various surgical applications (8).

Osteochondral tissue engineering has shown significant

progress in developing techniques for regenerating

damaged cartilage and bone tissues.

Due to the limited self-repair capacity of cartilage

tissue, it is essential to develop biomaterial-based

approaches with different structures. Given the role of

key genes in osteoregeneration and the growing need

for more cost-effective, rapid, and novel bone

regeneration methods, this study evaluated the

histological impact of acellular scaffolds in

combination with stem cells derived from cord blood

and platelet-rich fibrin.

2. Objectives

Additionally, the expression of Col 1, Col X, Runx2,

SOX9, and ALP genes was investigated in the repair of

knee defects in rabbits.

3. Methods

3.1. Prepration of Acellular Scaffolds

Osteochondral samples were obtained from the

femoral patella of ovine bone marrow and transferred

to the laboratory for freeze-thaw processing. Initially,

the fragments were washed twice with phosphate-

buffered saline. The samples then underwent four

freeze-thaw cycles, where they were frozen at -121

degrees Celsius for 20 minutes and subsequently placed

in liquid nitrogen. After each cycle, the blocks were

washed with distilled water. To remove cellular debris,

the blocks were treated with 1% Triton X-100 for 8 hours,

followed by an additional treatment for 16 hours. To

eliminate any remaining detergent, the samples were

washed twice with distilled water for 24 rounds. The

entire procedure was carried out using a rotator at room

temperature.

3.2. Platelet-Rich Fibrin Preparation

Platelet-rich fibrin was prepared by drawing 20 mL of

blood from a single candidate and transferring it into 10

mL sterile tubes without any anticoagulant. All samples

were centrifuged at 2700 rpm for 3 minutes. The upper

layer of each tube was collected and stored in sterile

syringes for scaffold fabrication. Subsequently, the PRF

structure was lyophilized and stored in a -20°C freezer

until use.

3.3. Cell Culture

After receiving USCs from healthy donors, they were

transferred to the laboratory for stem cell isolation

processing. Initially, the umbilical cord was washed

three times with phosphate buffer saline, then

fragmented and digested with type I collagenase for 30

minutes at 37°C. The cells were treated with DMEM-low

glucose (1 g/liter) and incubated at 37°C. After 24 hours,

the adherent cells were cultured and prepared for the

study.

3.4. Loading the Different Combination of Stem Cells Derived
Cord Blood and Platelet Rich Fibrin on Acellular Scaffolds

The scaffolds were wetted in DMEM medium and

incubated for 1 hour. After removing the medium, 1 × 106

stem cells derived from cord blood and platelet-rich
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fibrin were loaded onto the scaffolds and incubated for

an additional 2 hours.

3.5. Preparation of Animal and Histology

In this study, 12 male New Zealand rabbits, with a

mean weight of 1.300 - 1.500 kg, were housed in the

animal facility at Tehran Medical University, following

approval from the Ethics Committee (Approval ID:

IR.TUMS.AEC.1402.070). A hole measuring 4.5 mm in

diameter and 4 mm in depth was drilled in the femoral

patella of each rabbit's knee. The rabbits were divided

into four groups (3 rabbits per group): (1) control (OC),

(2) acellular osteochondral (AO), (3) acellular

osteochondral + PRF, and (4) acellular osteochondral +

stem cells derived from cord blood/platelet rich fibrin.

The defect in the femoral patella was treated with

scaffolds in groups 2, 3, and 4. Six months post-

operation, the implanted tissues were harvested and

transferred to 10% neutral buffered formalin (NBF, pH

7.26) for 48 hours. The samples were then decalcified in

10% formic acid for 10 days and processed. Sections of

5µm thickness were stained with Hematoxylin and Eosin

(H&E), Masson’s Trichrome (MT), and Safranin O (SO).

3.6. Analysis of Real time Polymerase Chain Reaction (PCR)

Using Trizol (Invitrogen, USA), total RNA was

extracted. The RNA purity was assessed by measuring

the absorbance at 260 nm and 280 nm (Nanodrop,

Biotek, USA). The extracted RNA was then reverse

transcribed into complementary DNA (cDNA) using a

Takara kit (Japan). The expression levels of mRNA

transcripts were quantified through real-time PCR

(Rotor Gene 6000, Corbett, Australia). The PCR product

detection was based on the fluorescence enhancement

observed from the binding of SYBR Green to double-

stranded DNA. Specific primers were used for the

following genes: SOX9 (forward: 5’-

GGCAGCTGTGAACTGGCCA-3’, reverse: 5’-

GCACACGGGGAACTTGTCC-3’) (18), collagen type I

(forward: 5’–CGGCTCCTGCTCCTCTTAGCG–3’, reverse: 5’–

CTGTACGCAGGTGACTGGTG–3’) (18), Runx2 (forward: 5’–

GACTGTGGTTACCGTCATGGC–3’, reverse: 5’–

ACTTGGTTTTTCATAACAGCGGA–3’), Col X (forward: 5’–

GAAAACCAGGCTATGGAACC–3’, reverse: 5’–

GCTCCTGTAAGTCCCTGTTGTC–3’), and ALP (forward: 5’–

TGTGCGGGGTCAAGGCTAAC–3’, reverse: 5’–

GGCGTCCGAGTACCAGTTGC–3’) (19), which were

designed using Primer3 software. The following PCR

conditions were applied: 94°C for 15 min, followed by 45

cycles at 94°C for 15 s, 58°C for 30 s, and 72°C for 30 s.

GAPDH (forward: 5’–CTGGTGCTGAGTACGTGGTG–3’,

reverse: 5’–CGTCAGCAGAAGGTGCAGAG–3’) was used as a

housekeeping gene to normalize the RNA quantity and

quality.

3.7. Statistical Analysis

The analysis of variance (ANOVA) was utilized to

assess the significance of new bone and blood vessel

formation, using GraphPad Prism software, Version 6.00

(GraphPad Prism, Inc., San Diego, CA). A significance

level was set at P < 0.05.

4. Results

4.1. Acellular Scaffolds and Isolation of Stem Cells Derived
Cord Blood and Platelet Rich Fibrin

The cells from the sample fragments were removed,

and the scaffolds were prepared for implantation. The

decellularized scaffold was confirmed histologically

(Figure 1). Stem cells derived from cord blood and

plasma rich fibrin were isolated from the blood, and the

scaffolds were exposed to these components for

implantation (Figure 2).

4.2. Histopathological and Radiological Analysis

The scaffolds were implanted into the femoral patella

of rabbits in groups 2, 3, and 4. As illustrated in Figure 3,
the various stages of implantation include: A and B

show the acellular scaffold, C and D depict the skin

incision, E shows the muscle incision, and F illustrates

the implantation of the scaffold. Histological sections

were examined 6 months post-implantation. In the

control group (untreated), the defect site was

completely repaired with fibrous connective tissue

(FCT), and an accumulation of inflammatory cells (ICs)

was evident. In the group treated with the acellular

osteochondral graft, the defect area was replaced with a

combination of neo-bone and fibrocartilage.

Additionally, tendon-like tissue (connective tissue) had

accidentally entered the defect site. The immaturity of

fibrocartilage tissue was confirmed using the Safranin O

(SO) staining technique. The stained images of the

osteochondral area in the AO+PRF-treated group

showed the formation of new bone and cartilage, with a

significantly higher amount of cartilaginous tissue

compared to normal tissue. Furthermore,

mineralization of the fibrocartilage tissue was observed

on a large scale. In the AO + PRF + cell group, new bone

maturation was considerably higher than in other

groups. The implanted material was fully recellularized,

and most of the desired tissue was hyaline cartilage,

with the cartilage layer showing normal thickness

(Figure 4).
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Figure 1. Osteochondral fragments. A, the cellular; and B, acellular

Figure 2. A, stem cells derived cord blood; and B, platelet Rich Fibrin

Figure 3. A and B, acellular scaffold; C and D, cutting the skin; E, cutting the muscle; F, implantation of scaffold.

Overall, no foreign body reactions or severe

inflammatory responses were observed. The AO+PRF-cell

and AO+PRF groups exhibited significant new bone

ingrowth (65 ± 6%), whereas the free AO group did not

show significant new bone formation (4 ± 1%). Hyaline

cartilage was formed in the AO+PRF-cell treated group.

The amount of new tissue was significantly higher in the

AO+PRF (158 ± 13) and AO + PRF + cell (1 ± 11) groups

compared to the AO (62 ± 8) and control groups, as

determined by histomorphometric analysis (Table 1).

https://brieflands.com/articles/ans-147989
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Figure 4. The findings of Histopathological in defect of osteochondral in the experimental groups. A, in the control group (untreated), the area of osteochondral defect was
completely replaced with fibrous connective tissue (FCT) and the accumulation of inflammatory cells (ICs) was evident; B, in Acellular Osteochondral graft, the implanted graft
completely filled by two types of tissue: Neo-bone and immature fibrocartilage (SO staining); C, the osteochondral defect in OA + PRF treated group showed new bone and
cartilage formation, however, the amount of cartilaginous tissue was significantly higher than normal tissue; D, the maturation of new bone in OA + PRF + cell treated animals
was significantly higher than other treatment groups. In addition, the thickness of the cartilage layer was normal. OB: Old Bone, NB: New Bone formation, ICs: Inflammatory
Cells. FC: Fibrocartilage, HC: Hyaline cartilage, FCT: Fibrous Connective Tissue, T: Tendon-like tissue, MB: Mature bone.

This demonstrated good biocompatibility in all

experimental groups (Table 2).

4.3. Chondrogenic Gene Expression Assessment by Real time
PCR

The results of Col 1 gene expression showed a

significant decrease in the AO + PRF group (P = 0.003)

compared to the Control group (0.25 or 2.86-fold). The

other groups showed an increase: AO group by 1.11-fold

and AO + PRF + Cell group by 1.52-fold; however, these

increases were not statistically significant, with p =

0.649 and P = 0.137, respectively, compared to the

Control group.

The expression level of Col X gene in the AO group

demonstrated a significant decrease (P = 0.005)

compared to the other three groups. Although the level

of Col X increased in the AO + PRF group, the change was

not statistically significant (P = 0.325). The effect of AO

and AO + PRF + Cell on the mRNA expression of SOX9

was significant with P = 0.012 and p = 0.036, respectively.

The ALP gene expression showed a significant

increase in both the AO group (P = 0.039) and the AO +

PRF group (P = 0.024) compared to the Control group.

Additionally, the Runx2 gene expression showed

significant changes across all groups compared to the

Control group. The AO group had a 7.31-fold increase (P =

https://brieflands.com/articles/ans-147989
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Table 1. Histomorphometric Findings of Regenerated Tissue in the Defect Area a, b

Valuable Ctrl AO AO + PRF AO + PRF + Cell

Fibroblast + fibrocyte 202.0 ± 28.0 32.0 ± 10.4 c 13.7 ± 5.1 d 4.5 ± 1.07 d

Osteoblast + osteocyte 3.5 ± 3.4 18.5 ± 3.4 e 199.7 ± 26.4 d 100.0 ± 12.9 c

Chondroblast + chondrocyte 0 125.7 ± 5.7 c 146.7 ± 7.8 c 233.2 ± 16.5 d

a Values indicates treatment group versus negative control group (C-).

b Values are expressed as mean ± SD.

c P < 0.01.

d P < 0.001.

e P < 0.05.

Table 2. The New Cartilage (%) and new Bone Formation (%) in Osteochondral Defect a, b

Groups New Cartilage Tissue (%) New Bone Formation (%)

Ctrl 0 A 1.6 ± 1.1 A

AO 10.3 ± 2.5 B 18 ± 2 B

AO + PRF 43 ± 4.3 C 45.3 ± 5.1 C

AO + PRF + Cell 48 ± 5 C 32 ± 3.6 C

a Different letters indicate significant differences between the treatment group.

b Values are expressed as mean ± SD.

0.000), the AO + PRF group had a 2.32-fold increase (P =

0.031), and the AO + PRF + Cell group had an 11.2-fold

increase (P = 0.000) (Figure 5).

5. Discussion

Our results have shown that the simultaneous use of

scaffolds, such as acellular osteochondral, with stem

cells like stem cell-derived cord blood and PRF, can

effectively accelerate the regeneration process for OC

defects in animal models. As observed in the histological

analysis, the maturation of new bone and cartilage in

the OA + PRF + Cell group was significantly higher

compared to the other groups. Additionally, our

radiological results indicated that the healed bone

exhibited less density when PRF was used as the sole

filling material, especially when combined with stem

cells. This outcome is expected, as PRF is considered a

membrane with soft tissue density (16). In a similar

study conducted by Zhang et al. in 2017, it was

demonstrated that platelet concentrations in PRP

samples were 4.9 times higher than in whole blood

samples, and the histological analysis of neo-tissue in

samples treated with scaffolds and autologous PRP

showed subchondral bone formation in a rabbit model

(17).

Recently, natural scaffolds have garnered increased

attention due to their ability to provide mechanical and

chemical signals for cell attachment and differentiation

in tissue regeneration. Scaffolds such as platelet-rich

plasma (PRP) and PRF are new biological tools in tissue

engineering and are widely used by surgeons and

dentists. Moreover, various studies have shown positive

outcomes with the application of PRF, either as a sole

filler or in different combinations, delivering

satisfactory results (18, 19).

In this study, we evaluated the expression of five

genes involved in articular cartilage degeneration,

osteoarthritis, repair, regeneration, and transplantation.

Col I is an osteogenesis-related gene and serves as an

ideal marker for bone regeneration (20-22). In this study,

the expression of the Col I gene showed a significant

decrease in the AO + PRF group, indicating a reduction

in tissue degeneration within this group.

SOX9 is a key cartilage matrix protein that regulates

and expresses itself alongside type II collagen (Col II)

and Col I (23). Researchers have demonstrated that

collagen type I and X (COL I, COL X) genes express

https://brieflands.com/articles/ans-147989
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Figure 5. The graphs show the expression of Col 1, Col X, SOX9, ALP and Runx 2 in 3 groups (AO (acellular osteochondral), AO + PRF (acellular osteochondral + platelet rich fibrin)
and AO + PRF + cell (acellular osteochondral +stem cells derived cord blood/ platelet rich fibrin)) compared with the control group. Overall, the expression of Col 1 in AO + PRF
group, Col X in AO group, SOX9 in AO and AO + PRF + Cell group, ALP in AO and AO + PRF group and Runx2 in all group have shown significant difference compared with Control
group. Data are determined as means ± SD; *P < 0.05; **P < 0.01.

hypertrophy-related proteins (24). The Col X content was

lower in the AO group, which correlated with enhanced

bone generation (25).

In terms of ALP gene expression, the AO + PRF + Cell

group showed a decrease compared to the AO and AO +

PRF groups. ALP is considered an early marker of

osteoblast differentiation and tends to increase in

osteochondral defects (26). However, the simultaneous

implantation of acellular osteochondral scaffolds, stem

cells, and plasma-rich fibrin was shown to reduce this

expression in the animal model.

On the other hand, Runx2 gene expression

significantly increased in all three groups. During the

development of osteochondral defects, the

hypertrophic process occurs alongside the

differentiation of articular chondrocytes. Runx2 plays a

fundamental role in regulating key genes involved in

chondrocyte/osteoblast differentiation and matrix

degradation (27, 28). Many studies have demonstrated

that Runx2 expression levels are elevated in human

osteochondral defects. To investigate the role of Runx2

in the development of osteochondral defects, genetic

animal models have been utilized. Overexpression of

Runx2 in mice has been shown to increase the

expression of cartilage proteases in chondrocyte cells

(29, 30). This also leads to the activation of matrix

degradation enzymes, such as MMP13 and ADAMTS5,

through the mitogen-activated protein kinase (MAPK)

pathways (31), and directly regulates MMP13 gene

transcription (32). It is now understood that the

implantation of scaffolds, along with a large number of

cells, is necessary for the repair of osteochondral

defects. However, Hansen et al. reported that increasing

cell seeding density did not have a positive effect on

cartilage repair (33). The results of this study indicate

that selecting the best materials is crucial for the

reconstruction process, which requires further research

in the field of tissue engineering.

5.1. Conclusions

In conclusion, the use of stem cells and plasma-rich

fibrin in combination with natural scaffolds, such as

acellular osteochondral scaffolds, can serve as an

effective filler for repairing bone and cartilage in

medical applications. However, evaluating more genes

and proteins in other animals and different parts of the

skeletal system could provide a deeper understanding

of these biomaterials.
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