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Abstract

Context: Spinal cord injury (SCI) is a devastating condition that results in severe disability and significant comorbidities. The

complex pathophysiology of SCI repair and difficulties understanding neural regeneration are treatment challenges.

Objectives: The aim of this study is to systematically review the diverse applications of various fish species as models for SCI

research.

Evidence Acquisition: PRISMA guidelines were used to review observational and interventional studies that utilized fish

species as SCI models, published from inception to July 2023. Two independent reviewers screened and performed the data

extraction. One independent reviewer assessed the risk of bias for the included studies.

Results: Five thousand six hundred and thirty-three records were reviewed, and 144 met the inclusion criteria and were

categorized by fish species. The majority of studies employed complete transection injuries, with the remainder being crush

injuries, laser injuries, electro-ablations, and demyelination with substances. Zebrafish (Danio rerio) were most commonly

utilized 102/144 (71%), primarily with larval models. Other models included Lamprey (Petromyzon marinus and Lethenteron

reissneri); Goldfish (Carassius auratus); European eel (Anguilla Anguilla); Knifefish (Apteronotus leptorhynchus and Apteronotus

albifrons); Sailfin Molly (Poecilia latipinna); and African turquoise killifish (Nothobranchius furzeri).

Conclusions: This systematic review highlights that fish models, particularly zebrafish, goldfish, and European eels, are

important models for further defining SCI pathophysiology and regenerative processes. These models provide a less complex

model to gain insights into apoptosis and glial networks.
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1. Context Traumatic spinal cord injury (SCI) results in damage

to the spinal cord parenchyma and associated nerves,

leading to loss of sensory, motor, and autonomic
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functions (1, 2). Spinal cord injury pathophysiology

categorizes these injuries as primary (due to mechanical

forces) and secondary injuries (resulting from ischemia,

inflammation, and other pathways) (3).

The prevalence of SCI has risen over the past three

decades, with males and elderly individuals being

significantly more affected. The World Health

Organization (WHO) notes that between 13 and 33

million people worldwide have subsequent SCI, and

there are 250,000 to 500,000 new cases annually. In the

United States, the incidence is estimated at 54 cases per

million people each year, contributing to healthcare

costs exceeding $1.69 billion annually (1). The global

impact of SCI can be reduced through effective

prevention, treatment, rehabilitation, and continuous

healthcare (4). Current therapeutic options for SCI are

limited, leaving patients with lifelong physical and

mental health issues (1, 3, 5). However, developing

effective therapies for SCI recovery requires improved

comprehension of the initial and secondary

mechanisms of injury, as well as regenerative pathways.

Several animal models have been developed to

evaluate the anatomical and biological aspects of SCI to

improve care (5). Animal models are essential for in vivo

SCI research, as they provide controlled environments

for studying physiological and pathological processes.

To develop effective treatments, these models need to

accurately mimic human conditions (6). Vertebrate

animals can regenerate their spinal cords during early

development, but their regenerative abilities in

adulthood vary among phylogenetic groups. Although

rodents are the most common species used in SCI

models, other vertebrates such as fish have also been

studied due to their distinctive regenerative capacities

(5).

This review was performed to better understand the

use of fish species as models for SCI research.

Specifically, this manuscript categorizes the diverse

methodologies and outcomes associated with using fish

models, including their regenerative capacity.

2. Objectives

This systematic review classifies fish models for SCI

based on study purpose, injury patterns and grades,

outcome metrics, and fish species.

3. Evidence Acquisition

3.1. Electronic Searches

This systematic review followed the Preferred

Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) 2020 guidelines. A comprehensive

literature search was conducted using PubMed, Scopus,

Web of Science, and Embase databases. Medical Subject

Headings (MeSH) terms and keywords such as "fishes,"

"goldfish," "spinal cord injuries," "spinal cord," "spinal

injuries," "wounds and injuries," and "zebrafish" were

employed to identify relevant articles up to July 2023. A

detailed search strategy is included in Appendix 1 in

Supplementary File. Google Scholar and reference lists

of primary studies and related reviews were manually

screened to capture additional relevant articles. The

Ethics Committee of Sina Trauma and Surgery Research

Center at Tehran University of Medical Sciences

approved the study protocol (reference number:

IR.TUMS.SINAHOSPITAL.REC.1400.073).

3.2. Eligibility Criteria

This review included all observational and

interventional studies published in peer-reviewed

journals that used fish species as a model for SCI. Studies

that focused on amphibians or used fish models for

peripheral nerve injury were excluded. Reviews,

abstracts, and editorial articles were also excluded from

the analysis.

3.3. Selection and Data Collection Process

Two independent reviewers conducted the initial

title-abstract screening and subsequent full-text

evaluation of potentially eligible studies. Relevant

studies were recorded in a predefined data collection

sheet (Appendix 2 in Supplementary File). Any

discrepancies between the reviewers were resolved

through adjudication with the corresponding author.

3.4. Assessment of Quality and Risk of Bias (RoB)

The risk of bias in the included studies was assessed

by two independent reviewers using the RoB assessment

tools designed for animal studies in SCI research (7).

Studies that met at least eight of the 15 internal validity

criteria were considered high-quality or low-bias. Out of

the 144 animal studies reviewed, 101 were classified as

high-quality, and 43 were identified as low-quality

(Figure 1).
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Figure 1. The risk of bias assessment of the included studies based on the Hassannejad et al., 2016 study (7). Each row contains a variable that checks through the included
studies and scores them based on high, unclear, or low risk of bias.

4. Results

4.1. Description of Studies

A total of 5,633 records were identified through title

and abstract screening, of which 413 manuscripts

underwent full-text review. After full-text analysis, 144

studies were included in the final analysis (Figure 2).

These studies were categorized based on the fish

species used as SCI models:

Zebrafish (Danio rerio): One hundred and two studies

Lamprey (Petromyzon marinus and Lethenteron

reissneri): Thirteen studies

Goldfish (Carassius auratus): Eleven studies

European eel (Anguilla Anguilla): Nine studies

Knifefish (Apteronotus leptorhynchus and Apteronotus

albifrons): Six studies

African turquoise killifish (Nothobranchius furzeri):

Two studies

Sailfin Molly (Poecilia latipinna): One study

In the 1920s, studies on goldfish (Carassius auratus)

and crucian carp (Carassius carassius) showed functional

recovery after SCI, although no notable morphological

investigations supported these findings at the time (8).

Subsequent research on species like guppy (Poecilia

reticulata) and Japanese rice fish (Oryzias latipes)

demonstrated that nerve fibers reconnect the severed

spinal cord, leading to the restoration of swimming

behavior (9). However, systematic exploration of fish

models for SCI remains limited.

Spinal cord transection was the most common

method used to induce spinal cord trauma in fish

models. Tail amputation was another prevalent method

for inducing injury, particularly in fish species that can

regenerate entire tail structures, which is

phylogenetically distinct from mammals that do not

have tail segments. Thus, spinal cord transections are

considered more consistent with mammalian SCI

models.

Another injury method involved laser axotomy,

which was used in both larval and adult zebrafish across

seven studies (10-16). Additionally, electroablation was

employed in one study to induce spinal cord neural

injury (17). In this technique, microelectrodes were

positioned between the horizontal myoseptum and

https://brieflands.com/articles/ans-149217
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Figure 2. PRISMA 2020 flow diagram for new systematic reviews

dorsal ridge of zebrafish larvae, and a 25 μA pulse was

applied for 1 second to inflict damage (18).

One study used a substrate-induced method to

damage the spinal cord by injecting α-bungarotoxin

into the junction between the brainstem and spinal

cord of adult zebrafish (17). For chemical demyelination,

Cunha et al. (19) utilized lysolecithin. The results from

studies employing these various methods to induce SCI,

including those investigating axonal regeneration at the

injury site, are consistent with findings from more

commonly used techniques.

4.2. Zebrafish

Of the 102 studies that utilized zebrafish as an SCI

model, 30 involved zebrafish larvae. The primary

mechanism of injury in these studies was spinal cord

transection. Fifteen studies employed alternative injury

mechanisms, such as laser-induced spinal avulsion (10-

16), electroablation using tungsten microelectrodes (18,

20-22) and pulled glass microelectrodes (23), and

demyelination using substrates such as lysolecithin (19,

24) and α-bungarotoxin (17). The most common injury

site was located 3 - 5 mm caudal to the brainstem-spinal

cord junction, typically at the level of the 15th myotome.

Other injury locations included the anal pore (22, 25,

26), optic tectum (27), 7th segment (28, 29), 16th-18th

somites (24), and 17th - 20th somites (30). All these

studies consistently described the injury as complete

axotomies (Appendix 3 in Supplementary File).

This analysis revealed that zebrafish are the

predominant fish species utilized for traumatic SCI

models. Zebrafish are a well-established model for

vertebrate development due to their embryonic

transparency, which allows for easy observation of

developmental processes. Furthermore, genomic

https://brieflands.com/articles/ans-149217
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sequencing has enabled the development of molecular

assessment tools for detecting neuronal regrowth (31).

Following spinal cord transection in zebrafish,

approximately 8% of actively dividing cells differentiate

into motor neurons near the injury site (32). In adult

zebrafish, the spinal cord undergoes significant

structural and functional changes after injury, leading

to the eventual restoration of normal function. These

acute and chronic regenerative responses result in

functional recovery around six weeks post-lesion (WPL)

(33), with no additional improvement observed after ten

WPLs (34). Upper motor neurons located in the nucleus

of the medial longitudinal fascicle and intermediate

reticular formation have the ability to repair their axons

within the spinal cord. This regeneration is facilitated by

the early activation of anti-apoptotic molecules.

Regenerating axons from higher motor neurons

migrate to the injury site within 10 - 15 days, crossing it

within 4 - 6 weeks post-SCI. This process leads to an

increase in anti-apoptotic molecules, including Bcl-2

and phospho-Akt, within 1 - 6 days after SCI (35).

Retrograde tracing studies have shown significant

changes in dopaminergic and serotonergic systems

during successful spinal cord regeneration in adult

vertebrates. One study focused on localizing dopamine

signals and revealed that Th1+ axons originating from

the brain are the primary source of dopamine in the

spinal cord (35). After a spinal cord lesion, significant

dopaminergic system alterations occur, initially

reducing rostral to the lesion and then continuously

increasing with regrowth caudal to the lesion. The

majority of Th1+ axons are dopaminergic, and their

regrowth correlates with functional recovery. In the

serotonergic system, circuitous axons with active

synapses were observed, and lesion-induced changes

included a reduction rostral to the lesion and a

subsequent increase caudal to the lesion. The number of

5-HT+ axons caudal to the lesion correlated with the

recovery of distal function. These findings highlight the

plasticity and regenerative potential of the

dopaminergic and serotonergic systems after SCI in

zebrafish (35).

4.3. Lamprey

Thirteen studies employed Sea Lamprey (Petromyzon

marinus) and Asiatic Brook Lamprey (Lethenteron

reissneri) as their SCI models, with ten using Lamprey

larvae. The predominant injury mechanism was spinal

cord transection at the 5th gill level. The severity of the

injury in these studies was consistently described as

complete, with no partially injured models employed

(Appendix 4 in Supplementary File).

Using gamma-aminobutyric acid (GABA)

immunofluorescence, Romaus-Sanjurjo et al. (36)

monitored anatomic changes at the transection site of

mature lamprey larvae for 10 WPL. There was a notable

reduction in GABA cells and fibers observed one hour

after the injury at both the rostral and caudal directions

to the lesion. The numbers of GABAergic cells and their

innervation returned to control values within 1 to 2 WPL.

The expression of transcripts for GABA type B receptor

subunits 1 and 2 was considerably reduced in the spinal

cord with lesions compared to control animals at 1, 4,

and 10 WPL.

4.4. Goldfish

Eleven studies employed goldfish as their SCI fish

model, with five studies using adult fish. The primary

injury mechanism was spinal cord transection,

although some studies employed variations such as

crushing injury (37) and hemisection (38). The injury

sites varied, including the left side of the spinal cord

(39), spinomedullary level (40, 41), first spinal nerve (38),

and posterior median septum (42). Consistent with the

other fish species, the fish received complete injuries,

except for two studies with the crush and hemisection

injuries (Appendix 5 in Supplementary File).

In mammals, after SCI, the extracellular matrix

inhibits neuroregeneration (43). Interestingly, these

same proteins are present at the injury site in goldfish

up to six WPL but do not interfere with neurogenesis

(44). One such protein is chondroitin sulfate

proteoglycans, which are present at the lesion site but

do not obstruct the growth of regenerating axons in

goldfish, as opposed to mammals. Neurites from the

goldfish midbrain nucleus grow toward the spinal cord

after the injury, promoting neurogenesis by innervating

the spinal locomotor neurons. This re-establishment of

locomotor nucleus neurons with their correct distal

pathways may serve as the foundation for enabling

functional recovery in goldfish (39). Two studies

revealed the aberrant pathway choice of the Mauthner

axon in the recovery of behavior and reactive cell

invasion after Mauthner axon injury (45, 46).

https://brieflands.com/articles/ans-149217
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4.5. European Eel

Eels are considered fish and specifically categorized

as ray-finned fish. Nine studies utilized the European eel

as an SCI model, with two employing immature eels. The

injury mechanism in all these studies involved the

transection of the spinal cord. The most common site of

spinal cord lesion was 13 segments caudal to the anus,

with the exception that some studies injured four

segments rostral to the anus (47), the level of the third

vertebra (48), and the level of body segment 60 (49). All

included studies consistently described the injury as

complete, without any partially injured models

(Appendix 6 in Supplementary File).

Flight and Verheijen (48) analyzed a European eel’s

four distinctive behavioral rehabilitation stages—head

and body movement, swimming behavior, rheotaxis,

and shelter-seeking—to monitor neurogenesis

development. These authors noted no differences from

normal behavior in lesioned eels after six weeks, where

behavioral recovery was considered complete. These

findings align with Doyle et al. (50), who reported that

fish with spinal injuries were able to regain their

normal tail functions after 5 weeks.

4.6. Other Teleost Fish

Five studies used brown ghost knifefish (Apteronotus

leptorhynchus) as their SCI model, all employing a

transection mechanism of injury. In two studies, the site

of the lesion was 4 mm caudal to the brainstem-spinal

cord junction. One adult and one larval African

turquoise killifish were used in two studies. The site of

injury in the adult killifish was not related to SCI but

was a contusion injury on the left optic nerve, whereas

the larval killifish underwent a complete transection at

the opposite site of the anal pore. Black ghost knifefish

(Apteronotus albifrons) and sailfin molly fish (Poecilia

latipinna) were used in one study each as complete

transection SCI models (Appendix 7 in Supplementary

File).

Sîrbulescu and Zupanc (51) monitored the adult

brown ghost knifefish at two hours post-injection in the

injury site. The caustic agent was active-caspase-

3/bromodeoxyuridine/Hu triple labeling, serving as a

quantitative analysis of apoptosis. Only 8% of cells

showed signs of apoptosis, increasing to 16% during 1 - 3

days post-injury. Between days 5 - 100, only 2% of cells

underwent apoptosis. After 150 days, the number of cells

labeled with these three markers was only 10% of the

total number of apoptotic cells, and by 200 days, no

labeled cells could be identified. The increased

apoptosis along the lesion margins may suggest that

apoptosis plays a role in clearing non-functioning cells

and promoting tissue healing during spinal cord

regeneration, in contrast to traditional mammalian

models where SCI-related apoptosis is viewed negatively

as a process that eliminates cells post-injury.

In contrast to mammals, Vitalo et al. (52) reported

that the glial scar in the SCI model of brown ghost

knifefish forms a well-developed network of radial glia

in both intact and wounded spinal cords. This network

supports the regeneration of tissue lost to injury and

likely plays a crucial role in generating new neurons.

5. Discussion

This systematic review highlights the diverse

applications of fish models in SCI research and their

potential to elucidate SCI pathophysiology and

regenerative processes. The widespread use of spinal

cord transection across various fish species emphasizes

the value of these models for investigating axonal

regeneration and recovery mechanisms. However, it is

recognized that this injury model differs from the blunt

trauma mechanism typically seen in human SCI.

Zebrafish, with their transparency and advanced

molecular tools, are particularly valuable for studying

regenerative responses in the spinal cord, while goldfish

and European eels demonstrate significant potential for

overcoming inhibitors of neuroregeneration. The

findings related to apoptosis and the formation of glial

networks in teleost fish models offer valuable insights

into tissue repair mechanisms.

Future research should focus on standardizing injury

paradigms and protocols across different fish species to

enhance the comparability and reproducibility of

results in SCI studies. Moreover, investigating the

molecular and cellular mechanisms underlying the

regenerative capacities observed in fish models could

offer promising avenues for developing targeted

therapeutic strategies for treating human SCIs.

5.1. Limitations

There are significant variations in the methods and

types of SCIs across different fish species and studies,

making it challenging to compare findings and draw

generalized conclusions. The diversity in study designs,

https://brieflands.com/articles/ans-149217
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species, and injury paradigms may also limit the

generalizability of findings to the human SCI context.

This review highlights the need for standardized

protocols and injury mechanisms to improve

comparability and reproducibility in future research

involving fish SCI models.

Supplementary Material

Supplementary material(s) is available here [To read
supplementary materials, please refer to the journal
website and open PDF/HTML].
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