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Context: Recently, the singular points of neural networks have attracted attention from the artificial intelligence community, and their
interesting properties have been demonstrated. The objective of this study is to provide an overview of studies on the singularities of

Evidence Acquisition: This review is based on the relevant literature on complex-valued neural networks and singular points.

Results: Review of the studies and available literature on the subject area shows that the singular points of complex-valued neural
networks have negative effects on learning, as do those of real-valued neural networks. However, the nature of the singular points in
complex-valued neural networks is superior in quality, and the methods for improving the learning performance have been proposed.
Conclusions: A complex-valued neural network could be a promising learning method from the viewpoint of a singularity.

1. Context

An artificial neural network is a machine learning
model and has recently attracted attention owing to its
human-like intelligence such as learning and generaliza-
tion (1).

A complex-valued neural network extends (real-valued)
parameters (weights and threshold values) in a real-val-
ued neural network to complex numbers. It is advanta-
geous because the good-natured behavior of a complex
number to rotate is assured. Thus, it is suitable for the
information processing of complex-valued data and two-
dimensional data and has been applied to various fields
such as communications, image processing, biological
information processing, land-mine detection, wind pre-
diction, and independent component analysis (ICA) (2).
Recently, a complex-valued firing-rate model was pre-
sented (3), which is an attempt to implement a neural
network of an actual brain with complex numbers.

Generally, a hierarchical structure causes singular
points. For example, consider a three-layered real-valued
neural network. If a weight between a hidden neuron
and an output neuron is equal to zero, then no value of
the weight vector between the hidden neuron and the
input neurons affects the output value of the real-valued
neural network. Then, the weight vector is called an un-
identifiable parameter, and is a singular point. It has been
shown that singular points affect the learning dynamics
of learning models and that they can cause a standstill in
learning (4-6).

This paper reviews the current state of studies on the
singularities of complex-valued neural networks.

2. Evidence Acquisition

This review is based on the relevant literature on com-
plex-valued neural networks and singular points. Al-
though the results in the literature are obtained by math-
ematical analyses and computer simulations, the use of
mathematical expressions has been avoided as much as
possible in this paper for the sake of simplicity.

3. Results

3.1. A Single Complex-Valued Neuron

The properties of the singular points of a complex-
valued neuron constituting a complex-valued neural
network have been described (7-9). There are two types
of complex-valued neurons: a complex-valued neuron
whose parameters (weight and threshold) are expressed
with orthogonal coordinates (e.g., x + iy) and a complex-
valued neuron whose parameters are expressed with
polar coordinates (e.g., r exp|if]), called a polar-variable
complex-valued neuron. It is trivial that the former com-
plex-valued neuron model does not have any singular
points. However, the polar-variable complex-valued neu-
ron has many singular points. The singular points bring
about various properties in the polar-variable complex-
valued neuron model.

Firstly, the parameters of a polar-variable complex-val-
ued neuron are unidentifiable. That is, if an amplitude
parameter r is equal to zero, then r exp[if] z = 0 holds for
any input signal z, and no value of the phase parameter
0 affects the output value of a complex-valued neuron.
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Thus, we cannot identify the value of 6 by learning. There-
fore, it is verified that 6 is an unidentifiable parameter,
and a polar-variable complex-valued neuron has an un-
identifiable nature.

Secondly, a plateau phenomenon could occur during
learning when using the steepest descent method with a
squared error. That is a learning period in which the learn-
ing error cannot be reduced occurs during learning, where
a “learning period” and “learning error” are usually used as
proper names in the field of neural networks. Thus, it has
been experimentally suggested that unidentifiable param-
eters (singular points) degrade the learning speed (7-9).

Finally, it was suggested experimentally that the steepest
gradient descent method with an amplitude-phase error
(10) and the complex-valued natural gradient descent meth-
od (11) are effective for improving the learning performance.

3.2. Three-Layered Complex-Valued Neural Network

Since there have been no studies on three-layered com-
plex-valued neural networks consisting of polar-variable
complex-valued neurons, three-layered complex-valued
neural networks consisting of only complex-valued
neurons represented by orthogonal coordinates are dis-
cussed in this section.

3.2.1. Local Minima of a Three-Layered Complex-Valued
Neural Network

Consider a three-layered complex-valued neural net-
work with L input neurons, H hidden neurons, and one
output neuron. The hierarchical structure of the three-
layered complex-valued neural network yields three
types of redundancies (Figure 1) (12). (a) In the upper part
of Figure 1, the hidden neuron j of the complex-valued
neural network never influences the output neuron be-
cause the weight \Z between the hidden neuron j and the
output neuron is equal to zero. Thus, we can remove the
hidden neuron j. (b) In the middle part of Figure 1, the
output of the hidden neuron j of the complex-valued neu-
ral network is only a constant k because the weight vec-
tor between the input neurons and the hidden neuron j
is equal to zero: w; = 0; then, we can remove the hidden
neuron j and replace the threshold of the output neuron
vowith v, + k. (c) In the lower part of Figure 1, we can re-
move the hidden neuron j, and replace the weight v; be-
tween the hidden neuron j, and the output neuron with
v.1+qvj2,where q=-1,1,-i,ori,and v, is the weight between
tfle hidden neuron j, and the output neuron because

wjl =4 ij

,where

is the vector that consists of the weight vector be-
tween the input neurons and the hidden neuron
j, and the threshold of the hidden neuron j, and

‘w ;2
is the vector that consists of the weight vector between

the input neurons and the hidden neuron j, and the
threshold of the hidden neuron j,.

Figure 1. Three Types of Redundancies of a Three-Layered Complex-Val-
ued Neural Network (© 2013, Elsevier. Used With Permission), % Not Yet
Obtained

The three types of redundancies described above
yield the critical point at which the learning error is
unchanged (12). There are three types of critical points:
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a local minimum, local maximum, and saddle point,
which can be identified using the Hessian, as is well
known. In the case of real-valued neural networks, the
redundancies corresponding to redundancies (a) and
(b) of the complex-valued neural network described
above inevitably yield saddle points, and the redun-
dancy corresponding to redundancy (c) of the complex-
valued neural network described above yields saddle
points or local minima according to the conditions
(13). Fukumizu and Amari (13) confirmed that the lo-
cal minima caused 50,000 plateaus using computer
simulations, which had a strong negative influence on
learning. It was proved that most of local minima that
Fukumizu and Amari (13) discovered could be resolved
by extending the real-valued neural network to complex
numbers; most of the critical points caused by the hi-
erarchical structure of the complex-valued neural net-
work are saddle points, which is a prominent property
of the complex-valued neural network (12). Note that
such local minima are only those caused by the hierar-
chical structures of the complex-valued neural network;
Local minima of the other types might exist in the com-
plex-valued neural network. Recently, it has been shown
that there exists a reducibility of another type (called
exceptional reducibility) (14). It is important to clarify
how the exceptional reducibility is related to the local
minima of complex-valued neural networks.

3.2.2. Learning Dynamics of the Three-Layered Complex-
Valued Neural Network in the Neighborhood of Singu-
lar Points

The linear combination structure in the updating rule
for the learnable parameters of a complex-valued neural
network increases the speed moving away from the sin-
gular points; the complex-valued neural network could
not be easily influenced by the singular points (15).

Consider a 1-1-1 complex-valued neural network (one in-
put neuron, one hidden neuron, and one output neuron)
and a 2-1-2 real-valued neural network (two input neu-
rons, one hidden neuron, and two output neurons) for
the sake of simplicity. The number of learnable parame-
ters (weights and thresholds) of the 2-1-2 real-valued neu-
ral network is seven, which is almost equal to the number
of learnable parameters eight of the 1-1-1 complex-valued
neural network. Thus, the comparison of the learning dy-
namics using those neural networks is fair.

The average learning dynamics are investigated, assum-
ing that the standard gradient learning method is used.
The following are the explanatory equations of the learn-
ing dynamics of the two neural networks:

(1) A(Parameter of the complex—valued neural network)=a@(#,)+bd(u,)

(2) A(Parameter of the real—valued neural network)=c@(u;)
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Here, @ is a real-valued activation function. A split-type
activation function @(x) +iQ(y) is used for the complex-
valued neuron, wherei= V-1and z=x+1iyis the netinput
into the complex-valued neuron. For example,ifa=b=c
and u, =u, =u,, then A (Parameter of the complex-valued
neural network) = 2a@(u,) = 2 A (Parameter of the real-
valued neural network) holds. Moreover, A (Parameter
of the complex neural network) cannot be easily equal to
zero because a@(u,) is not necessarily equal to zero, even
if one term in b@(u,) is almost equal to zero. Thus, we
can assume that the speed of the complex-valued neural
network moving away from the singularity is faster than
that of the real-valued neural network.

3.2.3. Construction of Complex-Valued Neural Networks
That do Not Have Critical Points Based on a Hierarchi-
cal Structure

It has been shown that the decomposition of high-
dimensional neural networks into low-dimensional
neural networks equivalent to the original neural net-
works yields neural networks that have no critical points
based on the hierarchical structure (16). As for the case
of complex-valued neural networks, a 2-2-2 three-layered
complex-valued neural network can be constructed from
a 1-1-1 three-layered quaternionic neural network. Such a
complex-valued neural network does not comparatively
suffer from negative effects caused by singular points
during learning because it has no critical points based on
a hierarchical structure.

The practical implementation of the 2-2-2 complex-val-
ued neural network having no critical points based on a
hierarchical structure is as follows.

1. Consider a 111 quaternionic neural network (called
NET 1 here). Let the weight between the input neuron and
the hidden neuron be A=a+ib +jc+kd € Q and the weight
between a hidden neuron and an output neuron be B =
a + iB +jy +kd € Q, where Q represents the set of quater-
nions. The quaternion is a four-dimensional number and
was invented by W. R. Hamilton in 1843 (17). Let C=p +iq
+ jr +ks € Q denote the threshold of the hidden neuron
and D = + iv + jp +ko € Q represent the threshold of the
output neuron. For a technical reason, we assume that D
=0.The activation functions are defined by the following
equations:

3) fo(#)=tanh(»,)+itanh (u,) + jtanh (#;) + ktanh (u,)

(4) u=u,+1iu,+ju;+ku, € Q
for the hidden neuron, and:
(5) go(n)=u,neqQ

for the output neuron. For the sake of simplicity, we omit-
ted the additional assumptions (see (16) for the details).
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2. Create a 2-2-2 complex-valued neural network (called
NET 2 here) by decomposing NET 1described above, where
a quaternion is decomposed into two complex numbers.
Thatis, the quaternion A=a+ib +jc+kd e Q representing
the quaternionic weight between the input neuron and
the hidden neuron is decomposed into the two complex
numbers a’=a +ib e Cand ¢’ =c+id € C, where C is the set
of complex numbers. Here, we used the Cayley-Dickson
notation: the weight A between the input neuron and the
hidden neuron of NET 1 can be written using Cayley-Dick-
son notation as follows:

(6) A=a+ib+jc+kd=da +¢j

wherea’=a+ibeCandc’=c+ideC.

Similarly, the quaternion B = o +ip +jy +kd € Q represent-
ing the quaternionic weight between the hidden neuron
and the output neuron is decomposed into the two com-
plex numbers o' = o +ip € C and dy’ =y + 18 € C. The quater-
nion C=p+iq+jr+ks e Q representing the quaternionic
threshold of the hidden neuron is decomposed into two
complex numbers p'=p+iqeCand ' =1 +is € C. We use
the activation function defined by the following equa-
tions for NET 2:

(7) f.(z)=tanh(x)+itanh(y),z=x+iyeC

for the hidden neuron, and
(8) g(2)=2z,2€C

for the output neuron.

NET 2 has no critical points based on a hierarchical
structure (as a complex-valued neural network). See the
literature (16) for the proof.

4. Conclusions

The author feels that the research results presented in
this paper are probably only scratching the surface of
the characteristics of the singularities of complex-valued
neural networks. We believe that the results reviewed in
this paper will be a clue to analyze the various types of
singular points and to provide more excellent complex-
valued neural networks. The problem of whether or
not the complex-valued neural network has fewer local
minima than the real-valued neural network remains
unsolved. This is an important but difficult problem. In
Section 3.2.3,a method for constructing a neural network
that has no critical points based on a hierarchical struc-

ture is described. This is a theoretical result, and its em-
pirical study is desired in future work.
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