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Abstract

association, and its impact on synaptic plasticity.

tau pathology in a mouse model.

animals.

Background: Traumatic brain injury (TBI), even single-impact mild TBI(mTBI), is associated with increased risk of neuronal damage
and neurodegeneration, leading to dementia, in particular Alzheimer’s disease (AD). The tell-tale histopathological defects of AD,
deposits of amyloid and protein tau are observed following TBI. However, little is known about the mechanisms underlying the

Objectives: This study aimed to analyze whether mTBI alters or accelerates relevant changes in synaptic plasticity at early stages of

Methods: A total of 24 mice were analyzed in this study, comprising Tau.P301L transgenic mice and age and background matched
wild-type mice as controls. Animals received a mild single-dose closed-head impact injury or a sham surgery. We measured ex vivo
parameters of basal synaptic excitability, short-term synaptic plasticity and long-term potentiation.

Results: While no changes in basal synaptic excitability and presynaptic short-term plasticity were observed, long-term potentia-
tion (LTP) in the CAl region was severely impaired. This deficit was aggravated in the Tau.P301L mice compared to wild-type control

Conclusions: Our data imply a high health risk of even a single mTBI episode. Single-impact mTBI combined with genetic predis-
position is proposed to trigger signals implicated in neurodegeneration.
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1. Background

Traumatic brain injury (TBI) is a common and often
devastating health issue. Among the many forms of TBI,
mild traumatic brain injury (mTBI) or concussive brain in-
jury constitutes the most common form (1). Thus, mTBI
affects more people and occurs more frequently than the
more severe forms of TBI. Mild traumatic brain injury has
been associated with, or causes diffuse neuronal damage,
apoptosis and metabolic changes (2, 3). Although 80%-
90% of all mTBI effects are resolved spontaneously within
a couple of weeks, some functional ailments can persist
for months (4). Axonal injury has been suggested to be a
primary factor of adverse outcomes following TBI (5). Fur-
thermore, TBI has been proposed to be a risk and initiat-
ing factor for the later development of neurodegenerative
diseases, including Alzheimer’s disease (AD) and chronic
traumatic encephalopathy (CTE) (1). Several studies ob-

served a history of TBI to be the strongest epigenetic risk
factor for neurodegenerative diseases (6-9). The diagnostic
histopathological defects of AD are amyloid plaques and
neurofibrillary threads and tangles (NFT) composed of hy-
perphosphorylated protein tau (10). Protein tau is a cyto-
plasmic, microtubule-associated protein (MAP) that is nor-
mally mainly present or enriched in axons.

Many neurodegenerative diseases are caused by aggre-
gation of protein tau in different brain regions and types
of neurons without any indications of amyloid plaque de-
position, and are commonly designated as tauopathies (11-
14). Various mutations in the tau-encoding gene cause sub-
types of frontotemporal dementia clinically similar to AD,
which itself is a secondary tauopathy. In AD, tau pathology
but not amyloid deposition correlates with disease sever-
ity and cognitive decline (15). Tau pathology has been doc-
umented in brain of humans after severe TBI and in box-
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ers who sustained a number of concussions resulting in
CTE, eventually resulting in dementia pugilistica (16-18).
Open-skull TBI accelerated tau pathology in young 3xTg-
AD and Tau.P301L mice, resembling human tauopathy in
both axonal and somatodendritic compartments (19). The
posttraumatic tau pathology seemed to be independent
of amyloid pathology. Furthermore, closed-skull mTBI
in APP/PS1 knock-in mice led to greater cognitive impair-
ment via mechanisms that involved neuroinflammatory
responses mediated by glia, while eventual tau-mediated
pathology was not investigated (20). However, it remains
unclear whether and how closed-skull mTBI affects hip-
pocampal synaptic plasticity, a sensitive marker of synap-
tic pathology, in a tauopathy model (20-22). Therefore, we
examined in Tau.P301L mice that model tauopathy associ-
ated with fronto-temporal dementia and AD (23) whether
mTBI induced by closed-head injury (24) led to chronic
changes in hippocampal synaptic plasticity.

2. Objectives

The aim of this study was to define the impact of mTBI
in a mouse model to probe whether TBI alters or acceler-
atesrelevant changes in synaptic plasticity atan early stage
of tau pathology.

3. Methods

3.1. Animals

Tau.P301L transgenic mice in the FVB/N genetic back-
ground express the longest human tau isoform with the
P301L mutation (tau-4R/2N-P301L) under control of the
mouse thyl gene promoter (23, 25). Male and female
mice used in the present study were heterozygous for
the transgene. All transgenic mice were genotyped by
standard polymerase chain reaction (PCR) methods on
DNA extracted from tail biopsies. Wild type FVB/N mice
served as controls (WT). A total of 24 mice, aged 8-10 weeks
at the time of surgery, were randomized into 4 groups:
FVB/Sham control group (n = 6) and FVB/mTBI group (n =
6), Tau.P301L/Sham (n = 5) and Tau.P301L/mTBI group (n =
7). All animals were kept in standard animal cages under
conventional laboratory conditions (12 h/12 h light-dark cy-
cle, 22°C), with ad libitum access to food and water. Ani-
mals were maintained and experiments were conducted in
accordance with university regulations and the European
Community Council Directive (86/609/EC).

3.2. Surgery

Experimental mild traumatic brain injury was induced
using the concussive closed head trauma device by Flierl et

al. (24). Surgery was performed under anesthesia by chlo-
ral hydrate (400 mg/kg intraperitoneally), with analgesia
provided by injection of buprenorphine (0.1 mg/kg subcu-
taneously). Additionally, local anesthesia over the incision
site was provided by local application of lidocaine. A mid-
line longitudinal incision exposed the skull. Mild trau-
matic brain injury was enforced with a metal rod weighing
333 g, dropped from a height of 1.5 cm onto the skull over
the sagittal suture, anterior to the lambdoid suture and
posterior to the coronal suture. The rod was retracted im-
mediately to prevent an unwarranted secondary impact.
Surgical sutures were used to seal the skin immediately
after the impact. Sham-operated control mice were sub-
jected to anesthesia, analgesia, scalp incision and suturing
only.

3.3. Electrophysiological Recordings

Long-term electrophysiological recordings were per-
formed as reported previously (26, 27). In brief, mice were
killed by cervical dislocation and their hippocampus was
rapidly dissected into ice-cold artificial cerebrospinal fluid
(ACSF), saturated with carbogen (95% O,, 5% CO,). The
composition of ACSF was (in mM) 124 NaCl, 4.9 KCl, 24.6
NaHCO;, 1.20 KH, POy, 2.0 CaCl,, 2.0 MgS0,, and 10.0 glu-
cose (pH 7.4). Transverse slices (400 pm thick) were pre-
pared from the dorsal area of the hippocampus with a tis-
sue chopper and placed into a submerged-type chamber,
kept at 33°C and continuously perfused with ACSF (flow-
rate 2.5 mL/min). After recovery for 90 min, two slices were
selected and tungsten electrodes were placed in the stra-
tum radiatum of area CA1 of each slice. For recording of
field excitatory postsynaptic potentials (fEPSPs), glass elec-
trodes (filled with ACSF, 3 - 7M{2) were lowered into the
stratum radiatum about 200 pm apart from the stimula-
tion electrodes. The time course of the field EPSP was mea-
sured as the descending slope function for all sets of exper-
iments. After input/output curves had been established,
the stimulation strength was adjusted to elicit a fEPSP-
slope of 35% of the maximum and kept constant through-
out the experiment. Paired-pulse facilitation (PPF) was in-
vestigated by applying two pulses in rapid succession (in-
terpulse intervals 0f 10,20, 50,100,200 and 500 ms, respec-
tively) at 120 s intervals. During baseline recording, three
single stimuli (0.1 ms pulse-width; 10 s interval) were mea-
sured every 5 min and averaged. For LTP induction, a sin-
gle theta-burst stimulation (TBS, 10 bursts of four stimuli at
100 Hz, applied every 200 ms; pulse width, 0.2 ms) was ap-
plied. Immediately after TBS, evoked responses were mon-
itored at 1, 4, 7 and 10 min and then subsequently every 5
minutes until the end of the recordings at 120 minutes. Ex-
periments of sham operated and mTBI, transgenic and WT
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mice were interleaved with each other. LTP was recorded
five weeks postinjury.

3.4. Statistics

Differences between groups were examined using
unpaired student’s t-test or repeated measures analysis
of variance (ANOVA). Greenhouse-Geisser correction was
used if violations of the sphericity assumption in the
ANOVAs were indicated. For a further analysis of inter-
action effects, simple effect analyses and Bonferroni ad-
justed post hoc pairwise comparisons were conducted.
For within-group comparisons, Wilcoxon matched-pairs
signed rank test was applied. All data are presented as
mean 1+ SEM, where n refers to the number of animals
tested.

4. Results

4.1. mTBI Effects on Hippocampal Short- and Long-Term Plastic-
ity

Because the CAl-region of the hippocampus is in par-
ticular vulnerable to various functional disturbances like
ischemia, and neurodegenerative diseases, including AD-
related pathology (28, 29) we analyzed hippocampal slices
and recorded field EPSPs (fEPSPs) in this region. First, we
measured the input-output properties and observed no
differences between sham and mTBI mice, or a contribu-
tion of the transgene, in fEPSP slopes regardless of stimu-
lus strength, F < 1(Figure 1and 2A). Likewise, there was no
effect of mTBI or transgene when short-term plasticity was
inspected by delivering two pulses at different interstim-
ulus intervals in rapid succession (paired-pulse measure-
ments, F < 1.0; Figure 1 and 2B).

Next we induced an unsaturated, weak type of LTP by
a single train of theta-burst stimulation (TBS), which we
had demonstrated previously to be very sensitive to dis-
turbances in the synaptic circuitry in the hippocampus
(27, 30). Induction of LTP in slices from sham-operated
WT animals and Tau.P301L mice, five weeks post surgery re-
sulted in pronounced, robust LTP that was retained until
the end of recording (120 minutes WT: 176.298 =+ 16.659%;
Tau.P301L: 181.401 £ 16.649%). In contrast, mTBI resulted
in a significantly lowered and more decremental potenti-
ation, which was most significant in the Tau.P301L mice,
which developed only short-term potentiation, which re-
turned to baseline after about 25 min (see Figure 2C). The
potentiation in the WT mTBI group was longer maintained
and returned to baseline only after about 95 minutes (see
Figure 1C). Statistical analysis by repeated measure ANOVA
confirmed the significant effect (F (3, 42) = 4.849, P < 0.01,
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1p> = 0.257). We concluded that our results clearly demon-
strated the detrimental effect of mTBI on CAI-LTP in all
mice, which was significantly aggravated by the tau pathol-
ogy in the Tau.P301L mice.

5. Discussion

Closed-skull mild traumatic brain injury has been as-
sociated with long-term cognitive deficits (31-33) and dif-
fuse cellular damage and apoptosis (3, 34). Even mild me-
chanical trauma to the head can initiate a complex cas-
cade of neurochemical and neurometabolic events. Trau-
matic brain injury has been linked to the later develop-
ment of a number of neurodegenerative features that are
typical of diseases like CTE and AD (1). Molecular mech-
anisms of mTBI and CTE are still only poorly understood
and as a consequence, there are no current pharmacolog-
ical treatments that prevent or considerably reduce cog-
nitive impairments associated with mTBI and CTE in hu-
mans (35). Diseases like CTE and AD converge mechanis-
tically onto synaptic dysfunctions, termed synaptopathies
(36). We therefore aimed in this study to probe whether TBI
altered or accelerated dementia-related changes in synap-
tic plasticity. These were reported to be prone to synaptic
disturbances (20-23, 29, 30, 37-40).

We applied a model of mild single, closed-skull TBI
onto Tau.P301L mice and their wild-type controls, matched
for age, gender and genetic background. In general, hu-
man mutant Tau.P301L is pathogenic and critical for cogni-
tive decline in older mice (23, 41), while cognition in very
young (1 - 2 month) Tau.P301L mice was improved com-
pared to wild-type controls (41). Furthermore, ex-vivo LTP
measured in the dentate gyrus in the hippocampus was
improved in adult Tau.P301L mice compared to FVB wild-
type controls (42). We observed that the heterozygous
expression of human Tau.P301L is sufficient to cause im-
paired cognition and behavior in 16 - 20 week old animals
(data not shown). For these reasons we analyzed heterozy-
gous Tau.P301L mice and tested whether the combination
of a single episode of mTBI with weak tau-related pathol-
ogy was sufficient to trigger lasting chances of synaptic
plasticity commonly associated with AD or CTE.

Interestingly, we observed that a mild, closed-skull im-
pact resulted in pronounced impairments of LTP in WT
and to an even greater extent in tau transgenic mice. Be-
cause basal synaptic transmission and presynaptic short-
term plasticity were not altered by mTBI in WT and tau
transgenic mice, the inability to induce LTP does not seem
to be caused by a general disturbance of synaptic trans-
mission or presynaptic functioning but rather by a spe-
cific LTP-deficit. Importantly, our results indicate that al-
ready a few weeks after a single mTBI incident, an acceler-
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Figure1. Electrophysiological Examination of Basic Excitability, Short-Term Plasticity and Long-Term Potentiation (LTP) in the CA1 Region of Wild-Type Control Mice in Response

to mTBI and Sham Operation, Respectively
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a, Input-output curves do not differ between groups 5 weeks postinjury (WT/Sham: n = 5, WI/mTBI: n = 5); b, Paired-pulse facilitation (PPF), a form of short-term plasticity, is
not significantly affected by mTBI 5 weeks postinjury (WT/Sham: n =5, WIT/mTBI: n = 6); ¢, LTP is slightly impaired in the WT mTBI groups 5 weeks postinjury (WT/Sham: n =6,
WT/mTBIL: n = 6); d, Representative examples of LTP in WT/ Sham and WT/ mTBI (individual mice).

ation of specific disturbances in the LTP machinery was ev-
ident. The disturbance is typically associated with an age-
related tau-driven phenotype and manifests itself as an im-
pairment of LTP maintenance. Given that deficits in LTP
correlate with impaired cognitive performance (43), our
data imply a high health risk of even a single mTBI episode.
Single-impact mTBI combined with genetic predisposition
might in itself be sufficient to trigger signaling events im-
plicated in CTE. Repeated mTBI that occurs for example in
athletes and military personnel is then proposed to aggra-
vate the pathological mechanisms even further.
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Figure 2. Electrophysiological Examination of Basic Excitability, Short-Term Plasticity and LTP in the CA1Region of Tau.P301L Mice in Response to mTBI and Sham Operation
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a, Input-output curves do not differ between groups 5 weeks postinjury (Tau.P301L/Sham: n = 4, Tau.P301L/mTBI: n = 6); b, PPF is not significantly affected by mTBI 5 weeks
postinjury (Tau.P301L/Sham: n =5, Tau.P301L/mTBI: n = 6); ¢, LTP is impaired in both mTBI groups 5 weeks postinjury (Tau.P301L/Sham: n =5, Tau.P301L/mTBI: n =7, white circles:
WT/mTBI: n = 6); d, Representative examples of LTP in Tau.P301L/ Sham and Tau.P301L/ mTBI (individual mice).
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