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Abstract

Background: During hypoxia, the increased production of reactive oxygen species occurs during the re-oxygenation phase of pe-
riodic continuous hypobaric hypoxia.
Objectives: In this study, we surveyed the effect of supplementary flaxseed (Fx) on oxidative damage to the hippocampus of the
hypoxic rat model.
Methods: In this study, 24 adult Wistar rats were randomly divided and studied in four groups: (1) The control group with normal
oxygen and food (Co.), (2) The sham group placed in a hypoxia chamber with normal oxygen and food (Sh.), (3) Hypoxia induction
group with normal food (Hx), and (4) Hypoxia induction group with 10% Fx food (Hx + Fx). Both the Hx and Hx + Fx groups were
kept in a hypoxic chamber for 30 days while the atmospheric pressure was reduced (oxygen 8%, nitrogen 92%) for four hours daily.
Malondialdehyde (MDA) and total antioxidant capacity (TAC) levels were evaluated in the hippocampus region of the brain tissue.
Neuronal damage was examined using histological studies. Blood samples were collected to measure interleukin-18 (IL-18).
Results: A significant increase was recorded in the IL-18 level and hippocampal dark neurons of the CA1, CA2, CA3, and dentate gyrus
(DG) areas in the Hx group as compared to Co. and Sh. groups (P < 0.05). Moreover, a significant decrease was noted in the dark
neurons in the Hx + Fx group as compared to the Hx group (P < 0.05). A significant increase was observed in the TAC concentration
in the Hx + Fx group in comparison with the Co., Sh., and Hx groups (P < 0.05), while a significant increase was observed in the MDA
concentration in the Hx group as compared to the Co. and Sh. groups and a significant decrease in the Hx + Fx group as compared
to the Hx group (P < 0.05).
Conclusions: This study suggested that the consumption of flaxseed could be a useful strategy for preventing the harmful effect of
hypoxia on the hippocampus of the rat brain.
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1. Background

Oxygen is vital for the development and growth of liv-
ing organisms and low oxygen pressure conditions can
cause hypoxia (1). The exposure of rats to hypobaric hy-
poxia for four weeks is the most common approach used to
produce a systemic hypoxia, which stimulates the produc-
tion of active oxygen species and reduces the number of
enzymes, antioxidants, and lipid peroxidation (2). Increas-
ing oxidative stress leads to morphological changes in the

hippocampus (3, 4). The antioxidant agents help high rate
cell survival by removing free radicals and dangerous com-
pounds (5). Flax, scientifically named “Linum Usitatisi-
mum”, is an herb containing polyunsaturated fatty acids
(PUFA) (6, 7), so it is able to protect the brain in stroke
models (8). Flaxseed (Fx) by neuroprotective effects can
reduce the brain injury in hypoxia animal models (9, 10).
Additionally, Fx is a good source of lignans, which is one
of the major classes of phytoestrogens that have antioxi-
dant properties to remove free radicals. Estrogen affects
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learning and memory in animal models and human stud-
ies and leads to increased dendritic thorn density in pyra-
midal neurons of the hippocampal region (11, 12). ALA is
converted in the body into two types of fatty acids includ-
ing eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA) (13). DHA has useful effects on preventing brain dam-
age and functional outcomes (14).

Due to the effects of hypoxia on the brain tissue, espe-
cially the hippocampus region, and the neuroprotective ef-
fects of Fx on animal models, we investigated the effects
of supplementary Fx on the hippocampus region of a rat
model of hypoxia.

2. Methods

2.1. Experimental Design

In this study, 24 Wistar adult rats (body weight = 240
- 300 g) were kept under constant laboratory conditions
and room temperature (20 - 22°C) and randomly divided
into four (n = 6) experimental groups: Control (Co.), sham
(Sh.), hypoxia (Hx), hypoxia + flaxseed (Hx + Fx).

Hypoxic rats were exposed to hypoxia (low oxygen
pressure) by placing in a hypoxic chamber where the atmo-
spheric pressure of oxygen was reduced (Oxygen 8%, Nitro-
gen 92%), 4 hours daily for 30 days. The hypoxic chamber
was made of plexiglass equipped with a nitrogen gas in-
let and a device controlling the oxygen pressure. During
the four hours that the rats were in the chamber, a suitable
amount of nitrogen gas entered the chamber as long as the
oxygen control device showed the oxygen content of the
chamber at 8%. The Co. group maintained in conditions of
normoxia (oxygen 21%) and free access to normal food and
water.

The Hx + Fx group was exposed to hypoxia four hours a
day and fed with 10% Fx after the first hypoxic exposure for
6 weeks.

2.2. Preparation of Brain Sections

The rats were decapitated under anesthesia (80 mg/kg
ketamine and 10 mg/kg xylazine) and the tissue was fixed
by transcardial perfusion with 0.9% saline and kept in 4%
paraformaldehyde in PBS. The brains were removed and
cut down into five µm sections for H&E and Nissl stain-
ing. The sections were examined under a light microscope
(Olympus, CX31, and Tokyo, Japan).

2.3. Cresyl Violet (Nissl) Staining

The dark neurons were visualized by staining for the
histological samples of the brain injury with Nissl staining.
Briefly, the brain was sectioned coronally with the thick-
ness of 5 µm. The sections were stained with 0.04% Nissl
staining dissolved in acetate buffer for 1 hour and dark neu-
rons in the hippocampus were counted (15).

2.4. Cell Quantification

The cells were counted for each animal from the in-
jured area (equivalent adult rat bregma coordinates -2.52
to -4.56 mm) in the dorsal part of the hippocampus cornu
ammonis (CA1, CA2, and CA3 areas) and dentate gyrus (DG).
The number of dark neurons counted was used as an index
of cell death.

2.5. Tissue Preparation for Enzyme Assay

The hippocampus region of the rat brain was dissected,
removed, and homogenized. The debris was removed by
centrifugation at 3500 g for 10 minutes. The supernatant
was collected to use for the estimation of the oxidative
stress marker (Malondialdehyde (MDA)) and the antioxi-
dant enzyme activity.

2.6. Evaluation of Brain Total Antioxidant Capacity (TAC) and
Lipid Peroxidation

After removing and homogenizing the hippocampus,
the debris was removed by centrifugation at 3500 g for
10 minutes. The supernatant was collected and 50 mg of
the supernatant was homogenized again in 10 volumes of
a buffer (solution PBS) and centrifuged. The supernatant
was collected and used for enzymatic studies.

2.7. IL-18 Demonstrations

After the induction of hypoxia, blood samples were col-
lected and centrifuged for 10 minutes at 20000 rpm to sep-
arate plasma for biochemical analysis of interleukin (IL).
IL-18 was determined in the serum by using the enzyme-
linked immunoabsorbent assay (ELISA) and Kit (Zell Bio-
GmbH) according to the instruction of the manufacturer.

2.8. Data Analysis

Statistical analysis was performed via one-way analysis
of variance (ANOVA) and the post hoc Tukey and Tamhane
T2 tests using SPSS 16 and P < 0.05 was considered signifi-
cant.

3. Results

3.1. Fx Effects on Neuronal Density and Dead Neurons in the Hip-
pocampus of Hypoxic Rats

In the hypoxic group, the number of dark cells in the
hippocampus significantly increased as compared to the
control group (P < 0.05) (Figure 1). In the Fx + Hx group,
the number of dark neurons in the hippocampus signifi-
cantly decreased after 6 weeks (P < 0.05). No significant
differences were observed between the control and sham
groups with respect to the number of dark cells in any of
the tested brain regions (Figure 2).
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Figure 1. Effects of Fx supplementation on histological changes in the hippocampus of rats with hypoxia. Histological changes in the hippocampus of rats during hypoxia
induction and the effect of flaxseed on the histopathology of different areas of the hippocampus (Cresyl Violet (Nissl) staining, X400). Hypoxia leads to disturbed neuronal
density in different areas of the hippocampus and significant improvements were observed in the Hx + Fx group. Co = control, Sh = sham, Hx = hypoxia, Hx + Fx = hypoxia
treatment with flaxseed.

3.2. Fx Effects on TAC and MDA in the Hippocampal Region of
Hypoxic Rats

A significant increase (P < 0.05) was observed in the
TAC concentration of the Hx + Fx group in comparison with
the other groups (Figure 3).

3.3. Evaluation of IL-18

Pro-inflammatory cytokine IL-18 was evaluated in the
sera for confirming the model of hypoxia. In comparison
with the control and sham groups, the Hx group showed a
significant rise (P < 0.05) in the level of IL-18 after hypoxia
(Figure 4).

3.4. Correlation Between Numerical Data

According to Table 1, a significant correlation was ob-
served between the amount TAC and the number of dark
neurons in the different regions of the hippocampus so
that an increase in the number of dark neurons was asso-
ciated with a decline in TAC (Figure 5). There was a signifi-
cant correlation between the MDA level and the number of
dark neurons in the hippocampus so that with an increase
in the number of dark neurons, the MDA level increased
(Table 1, Figure 6).

Table 1. The Effects of Oral Fx on TAC and MDA Concentrations

Hippocampal Areas TAC (g/dL) MDA (µmol/L)

Dark neurons in CA1 (%)

r -0.792 0.982

P value 0.004 0.000

Dark neurons in CA2 (%)

r -0.618 0.888

P value 0.043 0.000

Dark neurons in CA3 (%)

r -0.675 0.948

P value 0.032 0.000

Dark neurons in DG (%)

r -0.758 0.972

P value 0.011 0.000

4. Discussion

In this study, we evaluated the neuroprotective effects
of Fx in the rat hippocampus subjected to hypoxia. Our
results indicated that the Fx consumption in hypoxic rats
could increase neuroprotection against a hypoxic injury.

In the central nervous system, an injury caused by
hypoxia extends the spectrum of cognitive impairments
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Figure 2. Effects of Fx on the number of dark neurons in different regions of the hippocampus in rats with hypoxia. A, CA1; B, CA; C, CA3; and D, DG. * = compared to Co. group;
# = compared to Sh. group; & = compared two groups of Hx and Hx + Fx. Co = control, Sh = sham, Hx = hypoxia, Hx + Fx = hypoxia treatment with flaxseed.

(16-18). Inflammation is a critical factor in the develop-
ment of hypoxia in the brain and the production of pro-
inflammatory cytokines like IL-18 occurs in the hypoxia.
Hedtjarn et al. (19), found that IL-18 markedly increased af-
ter hypoxia suggesting that it is important for the devel-
opment of HI brain injury. Some investigations confirmed
that the generation of reactive oxygen species and the sub-
sequent oxidative stress have harmful effects in perinatal
brain hypoxia (20-23). The brain is one of the most sensi-
tive regions in response to oxidative damage (24, 25). Lievre
et al. found out that the neuronal generation of ROS in-
creased after transient hypoxia (26).

In the present study, Fx was used to decrease the ef-
fects of hypoxia in rats. Fx is one of the richest sources
of n-3 PUFA acid and α-linolenic acid (27, 28). Some stud-

ies reported that Fx exerts anti-inflammatory effects and
the important anti-atherogenic property of ALA may have
a potent anti-inflammatory role (29, 30). Nounou et al.
reported that Fx is one of the promising cytoprotective
factors for increasing defense mechanisms in the physi-
ological systems against oxidative stress (31). Lots of evi-
dence indicated that polyunsaturated fatty acids, like do-
cosahexaenoic acid (DHA), improved brain injury (32-34).
DHA maintains neurons and reduces cerebral damage at
the level of the middle hippocampus (35, 36). Studies have
shown that a low dietary consumption of FA or low plasma
DHA concentration is associated with impaired neurogen-
esis (37-39). In a study by Mokhtari et al. (28), the neuro-
protective effects of Fx oil on the functional motor recovery
were evaluated in a model of ischemic brain stroke. They
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Figure 3. Effects of Fx on the stress oxidative factors of the hippocampus in rats with hypoxia. A, TAC concentration was significantly different so that a significant increase
was observed in TAC concentration in the treatment group in comparison with the other groups (P < 0.05); B, the mean MDA concentration significantly increased in the Hx
group compared to the Co. and Sh. groups. There is also a significant difference with the Hx + Fx group (P < 0.05). * = compared to Co. group; # = compared to Sh. group; & =
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Figure 4. The changes in the serum IL-18 levels of rats after induction of hypoxia,
showing a significant rise in the level of IL-18 in the Hx group compared to Co. and
Sh. groups *. Co = control, Sh = sham, Hx = hypoxia.

showed that Fx could protect the cortex against ischemic
stroke by upregulation of the brain-derived neurotrophic
factor (BDNF) and glial cell-derived neurotrophic factor
(GDNF) (28).

DHA is cleaved from the membrane phospholipids to
free DHA during brain ischemia and reperfusion (I/R) (40-

42). Although DHA up-regulates the Bcl-2 family, it down-
regulates caspase-3 (41, 43, 44). During hypoxia, the pro-
duction of reactive oxygen species increases in addition to
the protective ability of the cells, which activate lipid per-
oxidation (45, 46). Pan et al. (47) found that chronic ad-
ministration of (DHA) could reduce MDA levels. Our results
showed that the mean number of dark neurons was high in
the hippocampus region following hypoxia. Moreover, the
number of dark pyramidal neurons reduced in the treat-
ment group in comparison with the hypoxic group. In this
study, we found that there was a significant change in the
level of TAC and lipid peroxidation in the treatment group
as compared to the hypoxia group in the hippocampus re-
gion.

4.1. Conclusions

The findings of the current study confirmed the
greater survival of hippocampal neurons in flaxseed
treated animals and provided an evidence to stimulate the
clinical development of flaxseed for use as effective ther-
apy in hypoxic brains in order to reduce the cognitive im-
pairment.

Footnote

Ethical Considerations 30557.
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