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Abstract

Objectives: The most common chronic disorder due to sudden change in the electrical activity of the brain is known as epilepsy.
It causes millions of deaths every year and is the second major disorder after stroke. The epileptic process involves an abnormal
synchronized firing of neurons usually characterized by recurrent seizures, which are highly complex, nonlinear and non-stationary
in nature. Even between seizures, the epileptic brain is different from normal and pathological conditions. The classical methods
fail to analyse the full dynamics in detecting epileptic seizure. The aim of this research was to quantify the dynamics of EEG signals
between seizures and seizure-free intervals using entropy based complexity measures at multiple temporal scales. The complexity of
epileptic seizure intervals is reduced because of degradation of structural and functional components. Thus, complexity measures
are more robust to fully analyse the dynamics of these signals.
Methods: The publicly available data comprise of three different groups of EEG signals: 1, Healthy subjects; 2, Epileptic subjects
during seizure-free intervals (interictal EEG); and 3, Epileptic subjects during seizure (ictal EEG); each of 100 EEG channel sample
at 174 Hz were taken to quantify the dynamics in these signals. To analyse the improved understanding of the epileptic process,
complexity-based techniques of Multiscale Sample Entropy (MSE) and Wavelet Entropy (Wentropy) including Shannon, log energy,
and threshold, and sure and norm developed in Matlab 2015a, were employed to distinguish these conditions. Mann-Whitney-
Wilcoxon (MWW) test was used to find significant differences among various groups at 0.05 significance level. Moreover, the area
under the curve (AUC) was computed by developing multi- receiver operating curve (ROC) in Matlab 2015a to find the maximum
separation to distinguish these conditions.
Results: The complexity of healthy and epileptic subjects (including both in the presence of seizures and without seizure) was
computed using MSE and Wentropy at multiple temporal scales. The healthy subjects exhibited higher complexity than the epileptic
subjects. Likewise, the complexity of ictal (seizure subjects) was higher than the interictal (without seizures). To distinguish healthy
subjects (Set O) from epileptic (Set S) subjects, the highest separation was obtained using wavelet norm 1.1 (AUC = 0.999) followed
by wavelet Shannon (AUC = 0.9944), MSE (AUC = 0.9727) and wavelet threshold (AUC = 0.942).
Conclusions: Optimal results using MSE were obtained at smaller scales whereas the wavelet entropies gave optimal results mostly
at higher temporal scales. Moreover, the highest separation in form of AUC was obtained using the Wentropy method with norm
parameter 1.1 to distinguish healthy (eye open) and epileptic seizure (ictal state) subjects followed by wavelet Shannon and MSE.

Keywords: Electroencephalogram, Entropy, Epilepsy, Seizures

1. Background

Epilepsy is known as the most widespread neurological
disorder with a prevalence of 0.6% to 0.8% of the world’s
population. Two-thirds of the patients used anticonvul-
sive medications to sufficiently control the seizure and 8%
to 10 % could benefit from respective surgery. However,
the currently remaining 25% of the patients have no suf-
ficient treatment for this disease. Epileptic seizure occurs
due to sudden malfunctioning in the brain and synchro-

nization of a set of neurons in the brain thereby reflecting
the excessive and hyper synchronous activity of neurons in
the brain. In this work, the dynamics of generalized, par-
tial (focal), and non-focal seizures were examined in detail.
The epileptic seizures termed as recurrent seizures are the
hallmark of epilepsy. According to clinical manifestation,
these seizures are divided to focal, generalized, partial, un-
classified, and unilateral (1, 2). Only a part of the cerebral
hemisphere is affected during focal epileptic seizure and
these seizures produce symptoms in corresponding body
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parts or in some related mental functions. The generalized
epileptic seizures involve the entire brain and bilateral mo-
tor symptoms are produced usually with loss of conscious-
ness. Both types of these seizures may occur at any stage.
Moreover, (1) it has been reported that generalized epilep-
tic seizures could be further subdivided to absence (petit
mal) and tonic-clonic (grand mal) seizures (2, 3).

To detect the epileptic seizures and spikes, various tra-
ditional methods are employed, such as visual scanning of
EEG recordings, which are inaccurate and expensive in case
of long recordings. Researchers have recently used many
automatic methods based on chaotic, time frequency anal-
ysis, neural networks or mixed methods, including corre-
lation dimension (CD), largest laypunov exponent (LLE),
Chaos - neural networks, approximate entropy, discrete
wavelet transform, k-nearest neighbours (KNN) classifier,
normalized Shannon, and spectral entropy (4).

The oscillatory activity of the brain is increasingly
thought to become synchronized during physiological or
pathological brain states and performance of certain tasks
(e.g. increased attention tasks, sleep-wake states, epilep-
tic seizures and optical stimulation, etc.). In addition, the
behaviour and complexity of the brain is nonlinear, thus
methods from the theory of nonlinear dynamics, such as
entropy, could be employed to analyse the dynamics of EEG
signals (5).

The complexity of a system or signal could be investi-
gated using several types of measures, such as entropies
or fractal dimensions. The methods could be used to com-
pare the signals, distinguish or detect the regular or ran-
dom epochs. A number of variants of this notion have been
proposed in the literature to show varying degrees of flex-
ibility, efficiency in computation, relevance to problems,
and theoretical foundations. The information processing
in the brain manifests itself through its global electrical
activity, measured by the electroencephalogram (EEG). It
is a multidimensional, nonlinear, non-stationary time se-
ries with respect to the processing point of view. Moreover,
variations of EEG are used for normal aging and patholog-
ical aging as means of complexity analysis (6).

In neuroscience, to characterize the specific brain re-
gion functions and to describe the functional integrations
are two complementary but not mutually exclusive issues.
These issues can be tackled by considering the brain as a
complex system (7). In this scenario, one can investigate
the complexity by characterizing a highly variable system
with many other parts whose behaviours are strongly de-
pendent on each other (8). The complexity of brain sig-
nals could be estimated using many information-theoretic
tools. Generally, complex systems could be characterized
by their entropy concerning their uncertainty. Typically,
low entropy values are related to a high degree of organiza-

tion; a high entropy value is associated with unpredictabil-
ity, uncertainty and disorder. Recently, to quantify the non-
linear dynamics and inherent properties in brain activity,
a number of techniques for signal analysis have been de-
signed (9). Kolmogorov entropy was developed by Pincus
in 1991 to measure the signal regularity (10), termed as ap-
proximate entropy (AE), which produced an average rate of
information in the dynamical system that could be used
for short and noisy data. In one dimensional represen-
tation of original time series, AE could search for epochs
that are similar and can also remain similar with increased
dimensionality (11). Moreover, they also introduced cross
sample entropy as a refined version of cross approximate
entropy to estimate the synchronization between the bi-
variate time series (12).

Biological signals including EEG and electrocardio-
grams (ECG) in the light of fundamental nonlinear the-
ory represent the outcome of nonlinear interactions be-
tween different processes at multiple spatial and tempo-
ral scales. In this manner, some studies require careful
examination of changes in nonlinear indices with scales.
Recently, heart-rate dynamics have been examined by (13)
using detrended fluctuation analysis (DFA) to examine
the crossover changes phenomenon of the fractal correla-
tion exponents between short and long time scales. The
short-term exponent is understood to be examined using
cardiorespiratory interaction (13, 14). Multiscale entropy
(MSE) analysis, proposed by a number of previous studies
(15-17), using entropy based methods, is able to measure
the complexity of nonlinear signals at multiple temporal
scales. For example, parasympathetic activity is correlated
with MSE on different scales of heartbeat sequence at scales
3 to 5, whereas parasympathetic processes are activated at
scales 1 to 4 (18).

Epilepsy is the most common neurological disorder
produced due to sudden malfunctioning in the brain and
synchronization of a set of neurons in the brain thereby
reflecting the excessive and hyper synchronous activity of
neurons in the brain. The signals are non-stationary, non-
linear, and highly complex in nature, the most highly ro-
bust methods from the theory of nonlinear dynamics are
required to capture the dynamics of these signals. The
classical methods fail to fully capture the dynamics in
these signals. Entropy-based complexity methods at mul-
tiple temporal scales were employed to quantify the dy-
namics of EEG epileptic seizure signals. In this research,
the complexity was investigated in EEG signals, including
five conditions to distinguish healthy subjects (with eyes
open and closed) and epileptic subjects (ictal interval- with
seizures), and epileptic subjects (interictal interval and
without seizures i.e. focal and non-focal signals). The com-
plexity was measured using multiscale sample entropy
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(MSE) and wavelet entropies at multiple temporal scales.
The main objective of this study is to quantity the dy-

namics of EEG signals with both ictal and interictal inter-
vals using complexity based entropy measures at multiple
temporal scales. The complexity loss because of degrading
in structural and functional components. The significance
was observed to distinguish different conditions at mul-
tiple temporal scales. The maximum separation AUC was
computed using ROC.

2. Methods

2.1. EEG Data Sets

The data was taken from publicly available datasets (19)
consisting of three different cases: 1, healthy subjects; 2,
epileptic subjects i.e. interictal (during seizure free inter-
val); 3, Epileptic subjects i.e. ictal (during seizure interval).
There were five cases in the dataset namely: O, Z, F, N and
S, whereas sets O and Z were taken from healthy subjects
with eyes open and closed conditions respectively by exter-
nal surface electrodes. Moreover, sets F and N were taken
from interictal subjects; where set F was attained from the
epileptogenic zone of the brain showing focal interictal ac-
tivity and N was attained from the hippocampal formation
of opposite hemisphere of the brain showing non-focal in-
terictal activity, while set S was attained from an ictal sub-
ject. All the sets contained 100 EEG channel sampled at
174 Hz and recorded for 24 seconds. All EEG signals were
recorded with the same 128- channel amplifier system, us-
ing an average common reference. After 12 bit, analog-
to-digital conversion, the data were written continuously
onto the disk of a data acquisition computer.

Epilepsy with onset seizures in adult lifetime is not a
rare phenomenon but a common diagnostic issue. In less
than 20% to 25% of patients with epilepsy, the first seizure
occurs at the age of 25. It is a disorder of cortical excitabil-
ity and interictal EEG is used as the most convenient and
least expensive way to demonstrate the physiological man-
ifestation of this disorder. About 50% of the patients show
interictal epileptic discharge of EEG with epilepsy.

Focal epileptic seizures produce symptoms in some re-
lated mental functions and in the corresponding part of
the body involving only part of the hemisphere function
whereas the generalized seizures involve the entire body
and generate bilateral symptoms normally with the loss of
consciousness, both of which may occur at all ages. The ic-
tal seizures are the most significant abnormalities in EEG
that result several diseases, such as tuberculous meningi-
tis, measles encephalitis, neurosyphilis, herpes simplex en-
cephalitis, rickettsia disease, and also result in craniocere-
bral trauma, or brain damage.

The following entropy-based complexity methods
were developed in Matlab 2015a to quantify the dynamics
of EEG signals with healthy and epileptic conditions.

2.2. Sample Entropy

To quantify the amount of regularity in a time series, it
is pertinent to understand the behaviour of a system. Sam-
ple entropy is one of the most popular regularity measure-
ments for a time series; an unbiased estimator of the con-
ditional probability that two similar sequences of m con-
secutive data points will remain similar when one or more
consecutive points are included (where m is the embed-
ded dimension). By using the sampling procedure, Sam-
pEn characterizes the complexity strictly on a time scale,
however, long-term structures in the time series cannot be
captured by SampEn. Therefore, Costa proposed a multi-
scale sample entropy (MSE) algorithm, which uses SampEn
at multiple time scales to tackle the problem under consid-
eration. Multiscale evaluation of the entropy has several
advantages by allowing inspection of the dynamics along
more than one temporal scale. This is a significant char-
acteristic of biological systems, which needs to be oper-
ated at multiple spatiotemporal scales, whose complexity
is also multi-scaled and hierarchal. The MSE is already used
in different fields to analyse different problems, such as hu-
man gait dynamics, time series of river flow, heart rate vari-
ability, electro seismic time series, social dynamics, time se-
ries of traffic flow, chatter to milling process, and vibration
of a vehicle etc. These works demonstrated the effective use
of MSE algorithm to analyse these complex time series (20).

The multiscale entropy method was developed to
quantify complex signals over a range of scales. By inte-
grating the values from a predefined range of scales, the
overall degree of complexity was computed. To compute
the MSE, two steps are mainly involved 1) Coarse graining
procedure used to represent the dynamics of system at dif-
ferent time scales; and 2) quantifying the degree of irregu-
larity of each coarse-grained time series using SampEn in-
troduced by Moorman. Sample entropy is the conditional
probability measure to quantify the likelihood that a se-
quence with m consecutive data points, that matches an-
other sequence of the same length (matches with toler-
ance), will still match another sequence when its length
is increased by one sample i.e. m + 1; thus, m defines the
patterns that are compared to each other. Mathematically,
this distance is computed between two vectors as the max-
imum absolute difference of their correspondence scale
component. Thus, sample entropy could be more precisely
computed using the following formula:

(1)SampEn (m, r) = lim
N→∞

− ln
Pm (r)

Qm (r)
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Where Pm (r) denotes the probability that 2 sequences,
which will still match for m+1 points and Qm (r) is the prob-
ability that 2 sequences will match for m points (with toler-
ance of τ ); where self matches are excluded. In this regard,
Equation 1) could be expressed as:

(2)SampEn (m, r,N) = − ln
Pm (r)

Qm (r)

By setting

(3)Q =

{
[(N −m− 1) (N −m)]

2

}
Qm (r)

and

(4)P =

{
[(N −m− 1) (N −m)]

2

}
Pm (r)

We have

(5)
P

Q
=

Pm (r)

Qm (r)

and thus sample entropy can be expressed as:

(6)SampEn (m, r, N) =
Pm (r)

Qm (r)

2.3. Multiscale Sample Entropy (MSE)

Sample entropy is applicable over a single time scale
factor yet for complex nonlinear signals (17) multiscale
sample entropy has been developed using coarse - grained
time series.

The coarse-grained time series y(τ ) could be computed
at scale τ as follows

(7)y
(t)
i

=
1

τ

∑jτ
i=(j−1)τ+1

xi, 1 ≤ j ≤
N

τ

Where coarse-grained is developed in a non-
overlapping window of length τ and data points in
each window are averaged as shown in Figure 1 below.

2.4. Wavelet Entropy

In signal processing applications, entropy is com-
monly used for analysis of nonlinear time series data.
Commonly-used entropy methods (21) include Shannon,
Log Energy, Threshold, Sure, and Norm etc. Shannon en-
tropy (22) was employed to measure the complexity of sig-
nal to wavelet coefficients generated by WPT, where larger
values show a high uncertainty process and therefore,
higher complexity. Wavelet entropy was used by a previous
study (23), which provided useful information to measure
the underlying dynamical process associated with the sig-
nal. The entropy ‘E’ must be an additive information cost
function such that E(0) = 0 and.

(8)E (0) = 0andE (S) =
∑
i
E
(
Si
)

2.5. Shannon Entropy

Shannon entropy (24) was first proposed in 1948
named after Claude Shannon. Since then, it has become
the most extensively applied modality in the information
sciences. Shannon entropy is a measure of the uncertainty
associated with a random variable. Specifically, Shannon
entropy quantifies the expected value of the information
contained in a message. The Shannon entropy of a random
variable X could be defined as follow:

(9)V (X) = V (P1, . . . , Pn, ) = −
∑n
i=1

Pilog2Pi

(10)Pi = Pr
(
X = xi

)

Where Pi is defined in Equation (10) (10) with xi indi-
cating the ith possible value of X out of n symbols, and Pi

denoting the possibility of X = xi.

2.5.1. Wavelet Norm Entropy

Wavelet Norm entropy (25) is defined as:

(11)E (S) =

∑
i|Si|p

N

Where p is the power and must be 1 « P < 2 the terminal
node signal and (Si) i the waveform of terminal.

2.6. Statistical Analysis

The significance analysis was performed using non-
parametric procedures based on no or few assumptions
about shape and parameters. For different analysis, type’s
different non-parametric test can be applied e.g. for two
dependent variables sample Wilcoxon signed-rank test is
applied, and if data contains more than two independent
samples, then Kruskal-Wallis test is used to estimate the de-
gree of association, finally between two quantitative vari-
ables, Spearman’s rank correlation procedure can be used.

In this study, to distinguish healthy subjects from ic-
tal and interictal signals, the Wilcoxon rank-sum test was
applied. It is valid for any type of data normal or not and
this test is much more sensitive to outliers as compared
to sample t-test. Wilcoxon rank-sum test is based on rank-
ing of nf + nnf observations of a combined sample. Each
sample from observation has a rank; the smallest has a
rank of one, second smallest has a rank of two and so on.
This test is basically sum of all the ranks of the observa-
tion from one of the samples. P values are computed from
the Wilcoxon rank-sum test, which is the gold standard
for measuring significance. The statistical significance al-
lows distinguishing of these different conditions at multi-
ple temporal scales (Table 1).
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Figure 1. Coarse Grained Time Series Procedure

2.7. ROC Analysis

The ROC is plotted against the true positive rate (TPR)
i.e. sensitivity and false positive rate (FPR), specifying val-
ues of healthy and epileptic seizure subjects. The mean fea-
ture values for healthy subjects are classified as 1 and for
epileptic subjects as 0, similarly, healthy and focal, healthy
and non-focal signals are computed. These vectors are then
passed the ROC function, developed in Matlab 2015a, which
plots each sample value against specificity and sensitivity
values. The multi ROC function was developed to visual-
ize the separation of different methods. The ROC is a stan-
dard way to classify the performance and visualize the be-
haviour of a diagnostic system. The TPR is plotted against
the y-axis and FPR is plotted against the x-axis. The area un-
der the curve (AUC) shows the portion of a square unit. Its
value lies between 0 and 1. An AUC of > 0.5 shows the sep-
aration. A higher AUC shows a better diagnostic system.
Correct positive cases divided by the total number of posi-
tive cases are represented by TPR, while negative cases, pre-
dicted as positive divided by the total number of negative
cases, are represented by FPR.

3. Results

In this study, the complexity based method i.e. sam-
ple entropy and wavelet entropies were computed at mul-
tiple temporal scales to distinguish healthy subjects from
those with epileptic seizure and non-epileptic seizure sub-
jects. The healthy subjects included both eye closed and
eye open conditions, whereas epileptic patients were fur-
ther divided to two categories i.e. seizures (ictal inter-
val) and without seizure (interictal interval). The interic-
tal intervals were further divided to focal and non-focal sig-
nals. The recordings from healthy subjects are taken from
extracranial surface while that of ictal and interictal are
taken from the intracranial surface. There were 100 EEG
channels in each subject sampled at 174 Hz, recorded for
24 seconds. Area of the brain which may generate seizures
is termed the epileptogenic zone (EZ); intracranial record-
ings are the best method to describe EZ. Study of EZ also
indicates the area of the cortex, which is responsible for
inter-ictal spikes (IIS). The epileptogenic zone is not any
static part but is a dynamic part of the brain, which causes
an epileptic seizure in children’s focal epilepsy, starting
from the occipital region and then migrating to the tempo-
ral region and finally disappear. As the epileptogenic zone
has degraded due to structural dysfunction, its complex-
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Table 1. Summary of Significance Values (Max. Spread) with Scale and Significance Values Scale Range Using MSE and Wavelet Entropy Techniques for Time Scales (t≤ 25) with
m = 1 and r = 0.25 Times the Standard Deviation of the Original Data Sequencea

Significance O vs. S Z vs. S O vs. F O vs. N Z vs. N Z vs. F

MSE

P value 1.28E - 34 3.08E - 30 3.56E - 34 3.26E - 34 4.49E - 32 4.46E - 33

Scale 3 1 3 5 3 3

Range 1 - 25 1 - 25 1 - 25 1 - 25 1 - 25 1 - 10

Wavelet Entropy (Shannon)

P value 2.72E - 34 1.21E - 32 2.82E - 7 1.10E - 5 1.40E - 4 1.68E - 6

Scale 6 2 16 19 15 12

Range 1 - 25 1 - 25 7 - 25 9 - 25 1 - 25 1 - 25

Wavelet Entropy (Sure,3)

P value 7.20E - 28 2.44E - 28 1.05E - 3 7.55E - 5 1.00E - 4 1.97E - 4

Scale 2 1 1 2 14 23

Range 1 - 25 1 - 25 1 - 5 1 - 6 1 - 25 1 - 25

Wavelet Entropy (Norm,1.1)

P value 3.46E - 34 2.56E - 34 2.41E - 3 1.06E - 4 1.83E - 7 2.35E - 8

Scale 7 5 1 and 19 1 14 12

Range 1 - 25 1 - 25 1 - 4 and 12 - 25 1 - 5 and 11 - 25 1 - 25 1 - 25

aHere ‘Range’ denotes the scale range where the subjects depict the significance values in this range of scale.

ity is also degraded. Moreover, in this study, focal signals
are those, which consist of intracranial, inter ictal record-
ing from hippocampal, and epileptic zones. These are the
regions that are indispensable for the generation of an
epileptic seizure. Likewise, non-focal signals are recorded
from a non-epileptogenic brain using intracranial record-
ings. These signals are more complex; they are either
not involved in epileptic activity or contain less informa-
tion about epileptic activity so their fractal analysis reveals
higher mean and SD.

In Figures 2 and 3, the shape and spread of MSE and
Wavelet norm values for healthy subjects (Set O, Set Z),
epileptic subjects i.e. ictal interval (Set S), non-epileptic
subjects i.e. interictal interval with focal subjects (Set F)
and Non-focal subject (Set N) is presented using a boxplot
at various temporal scales. The boxplot is a useful way to
visualize the range, medians value, normality, and skew-
ness of distribution. The median values of MSE and Wavelet
norm derived from the time series of all five groups in-
creased at smaller scales and then after reaching a maxi-
mum value, gradually decreased with an increase in tem-
poral scales. It was also observed that smaller MSE values
were found at smaller scales where optimal significance
values are depicted as shown in Table 1 i.e. MSE median val-
ues are increased with an increase of scales. While in case

of Wavelet norm, the minimum mean entropy values are
found at higher scales where the optimal significance val-
ues are observed i.e. the median Wavelet norm values de-
creased with an increase of scale.

A receiver operating characteristics (ROC) graph is a
technique used to visualize, organize, and select classifiers
based on their performance. The ROC is used in signal
detection and exhibits tradeoff between hit rate and false
alarm rate of classifiers (26, 27). Besides, the medical de-
cision making community has an extensive literature on
the use of ROC graphs for diagnostic testing (27, 28) and
have brought ROC curves to the attention of the wider pub-
lic with their scientific American article. The area under
the curve (AUC) values discriminate healthy subjects eye
open set with seizure (Set S) using MSE and wavelet en-
tropy (Shannon, Log Energy, Threshold, Sure and Norm).
The AUC obtained ranges from 0.876 to 0.999 in all cases.
All the methods provide the highest value of AUC denoting
extremely significant results to distinguish healthy and
epileptic subjects (with and without seizures). The high-
est AUC value was obtained using Wentropy (‘Norm’, 1.1) i.e.
AUC = 0.999, whereas MSE and Wentropy (Shannon) also
give the second highest, AUC = 0.9727 and AUC = 0.994, re-
spectively. The statistical comparisons show that accuracy
differences are extremely significant (P < 0.0001). To quan-

6 Arch Neurosci. 2018; 5(1):e61161.

http://archneurosci.com


Hussain L et al.

Figure 2. Boxplot of MSE Values for Healthy Subjects (Set O, Set Z), Epileptic Subject (Set S), Focal Subject (Set F) and Non-Focal Subjects (Set N) at Different Scales
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Figure 3. Boxplot of Wavelet Norm with Parameter 1.1 values for Healthy Subjects (Set O, Set Z), Epileptic Subjects (Set S), Focal Subject (Set F) and Non-Focal Subject (Set N) at
Different Scales
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tify the diagnostic accuracy of a test, ROC plot AUC is the
most conveniently used global tool. The ROC graph (29) is a
technique used to visualize, organize, and select classifiers
based on their performance and have been used for a long
time in the signal detection theory to depict the trade-off
between false alarm rates and hit rate of classifiers.

In Figure 4, log energy, sure, threshold and norm, and
wavelet entropies are presented for comparing healthy
and epileptic seizure subjects and Figure 5 distinguishes
these groups using wavelet Shannon and MSE at scales
where optimal significance results are obtained. The re-
sults indicated that norm wavelet entropy provided the
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highest degree of separation with AUC = 0.999, followed by
wavelet Shannon (AUC = 0.994), MSE (AUC = 0.972), Wavelet
threshold (AUC = 0.942), sure (AUC = 0.876) and log energy
(AUC = 0.876) for distinguishing healthy and epileptic sub-
jects.
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Figure 4. ROC to Distinguish Healthy (O) and Epileptic Subjects (S) using Wentropy
Methods
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Figure 5. ROC for Distinguishing Healthy (O) and Epileptic Subjects (S) Using MSE
Wentropy (Shannon)

In this paper, MSE and Wentropy methods are applied
to study and detect the EEG epileptic seizures and to dis-
tinguish healthy and epileptic subjects with both interictal
and ictal regions. The datasets (30) comprised of sets O, Z,
F, N and S. The comparison was made between healthy set
O (Eye open) and epileptic set S (ictal) subject, healthy set Z
(Eye closed) and epileptic set S (ictal) subjects, healthy set
O (Eye open) and set F focal from interictal subject, healthy
set O (Eye open) and set N non-focal from interictal sub-
jects, healthy set Z (Eye close) and set F focal from interictal
subjects, healthy set Z (Eye close) and set N non-focal from
interictal subjects.

Entropy-based techniques are used to measure the de-
gree of randomness in a time series (10). The SE and AE
were used and pointed out that there is no straight forward
relationship between regularity and entropy based met-
rics and MSE curves, which are used to compare the rela-
tive complexity of the normalized time series. The entropy
values for time series derived from healthy subjects using
both eyes open and closed are higher than the epileptic in-
terictal and ictal subjects. The entropy values from healthy
subjects increased on a small time scale and then stabilized
to relatively constant values while the entropy values de-
rived for the subjects with epileptic seizures and interictal
and ictal decreased on smaller scales and then gradually
increased. Moreover, MSE at smaller scale entropy values
are smaller and increase slightly up to scale 10, however
from scale 11 to 25, it remains almost constant, while using
Wentropy, the entropy values monotonically decrease for
smaller scales and remain constant at higher scales.

4. Discussion

Epilepsy is the most chronic common neurological
disorder, for which there is a prevalence of sudden un-
expected death including unwitnessed, unexpected, and
non-traumatic death in patients with or without evidence
of epileptic seizures. Due to this disorder, over 50 million
deaths occur because of epileptic seizures. Epilepsy is the
second major disorder after stroke. The epileptic seizure
signals exhibit highly complex nature of data with non-
linearity and non-stationarity properties. Thus, this study
emphasizes on the novel complexity-based measures and
wavelet entropy methods at multiple temporal scales to
quantify the dynamics and detect epileptic seizures. The
complexity was computed for both ictal, interictal, and
healthy subjects.

The epileptic animals had lower entropy values (31, 32)
in their EEG signals, shown previously in case of interictal
states to pathological and diseased biological systems (30,
31, 33-38). Lower entropy values also reveal that the signal
has reduced complexity and previous findings also show
that the brain was reflected due to abnormal behaviour in
the rats (12, 20, 24, 32, 38, 39). In clinical context, it could
be expected that this in coordination could be reflected in
both psychiatric and cognitive dysfunction as observed in
patients with MTLE (40, 41). Medial temporal lobe epilepsy
(MTLE) is commonly recognized due to psychiatric and
cognitive comorbidities and clinical factors whose quality
of life impact exceeds the seizures themselves (41-43).

Organic etiology for these psychiatric symptoms seem
likely, and there are several results that suggest ongoing in-
terictal brain abnormalities in the epileptic brain (42). This
apparent association between behavioural and psychiatric

8 Arch Neurosci. 2018; 5(1):e61161.

http://archneurosci.com


Hussain L et al.

abnormalities and cognitive disorder in epilepsy com-
plements the growing realization that cognitive deficits,
which may be fundamental in schizophrenia (44, 45).

The entropy was measured for control animals and
epileptic animals for individual channels and showed that
control animals had larger entropy values than the epilep-
tic animals, also consistent with previous studies that en-
tropy values are reduced for biological signals associated
with death and aging (17, 30, 31, 33-36).

Table 1 shows the MSE profile analysis where healthy
subject set O (Eye open) and epileptic ictal subjects depict
highly significant results at all time scales 1 to 25. How-
ever, the significance level monotonically decreases down-
ward. The highest significance value between set O and
S was obtained in scale 3, while scale 1 to 6 also gave ex-
treme significant results to distinguish subject O and S.
Similarly, the healthy subject Z (Eye close) and epileptic ic-
tal subject S using MSE also gave significant results from
scales 1 to 17, whereas scales 1 to 5 showed extremely signifi-
cant results and scales 6 to 17 also gave significant results to
discriminate healthy Z and epileptic S subjects. Moreover,
healthy subjects in set O (Eye open) and epileptic subjects
(Focal interictal set F) also provided almost significant re-
sults at all time scales yet extreme significance levels were
attained at time scale 1 to 6 while scale 3 also gave the high-
est significance value for distinguishing Z and F sets. Like-
wise, healthy subject O (Eye open) and epileptic (interictal
non-focal N set) also provided significant results at all time
scales yet extreme significance level was attained at scale
1 to 12, where scale 4 gave the highest significance value.
Finally, healthy subject Z (Eye close) and epileptic (Inter-
ictal Focal F and Interictal no-focal N) gave significant val-
ues up to scale 10 only. Therefore, using the MSE profile it
was observed that scale 1 to 6 distinguished healthy and
epileptic subjects in all the conditions with extreme signif-
icance level and scale 3 and 4 in most cases gave the high-
est significant P value. Furthermore, in all cases, the signif-
icance level decreased monotonically where, healthy sub-
ject Z (Eye close) with epileptic subjects did not provide
significance value to distinguish healthy and epileptic sub-
jects at all time scales.

Previous studies from heart rate variability also re-
vealed that as entropy is a measure of regularity (order-
liness), the higher the amplitude of the respiratory mod-
ulation, the lower the entropy values tend to be. Dur-
ing the coarse-grained process, the respirator-related heart
rate oscillations were filtered out so on larger time scales,
healthy subjects tend to be more irregular and are there-
fore assigned higher entropy values. Epileptic seizure de-
tection and prediction methods have become increasingly
valuable, which warn the patients at an early stage before
the seizure may occur. Moreover, neurologists and medical

staff could further perform behavioural testing to further
assess which function may be impaired because of epilep-
tic seizure and help them localize the source of epileptic
seizure activity. Various methods have been used to predict
and detect epileptic seizure activity, including frequency-
based methods (46), time-domain analysis (47), intelligent
approaches (48), nonlinear dynamics and chaos (49), and
methods of delays (50). Additionally, to analyse the epilep-
tic EEG recordings, several linear (51) and nonlinear meth-
ods (52) as well as multi-way array models (53) have been
used to localize the seizure origin and further understand
the complex structure of an epileptic seizure. The results
indicate that complexity based methods at multiple spa-
tiotemporal scales could also be the most powerful tools
to analyse the nonlinear dynamics in EEG signals to distin-
guish healthy subjects with epileptic subjects (including
both with seizures and without seizure intervals) as em-
ployed in heart rate variability, gait signals, and other phys-
iological signals.

4.1. Conclusion

Epilepsy is the most widespread neurological disorder
that has occurred due to persistent neurological disorder
in the brain. Due to the complex nature of EEG signals
with epilepsy, the diagnosis of epilepsy becomes a diffi-
cult task and requires observations of the patient from
EEG and gathering additional clinical information. The
present study aimed at distinguishing healthy subjects (O
eye open and Z eye close conditions) with epileptic sub-
jects (S seizures ictal state, F and N seizures free focal, and
non-focal interictal states) based on entropy-based meth-
ods. Furthermore, MSE and Wentropy methods reveal that
healthy subjects with both eyes opened and closed show
higher complexity than epileptic subjects, including both
ictal and interictal subjects. Moreover, complexity of in-
terictal subjects was also higher than ictal subjects. Thus,
regarding complexity, the following trend was observed:
healthy subjects> interictal subjects > ictal subjects. This
shows that subjects during seizures lose their structural
and functional components resulting in a decrease in com-
plexity. The results are also consistent with previous stud-
ies indicating that complexity of healthy subjects is greater
than the complexity of pathological subjects. Statistical
significant results were obtained in most of the scales,
however, scale 1 to 6 gave extremely significant results and
significance level decreases monotonically. The highest
AUC separation was obtained using Wentropy (‘norm’, 1.1)
with AUC = 0.999 and MSE and Wentropy (Shannon) also
gave AUC = 0.9727 and AUC = 0.994, respectively.
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