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Abstract

Background: Space is a harsh environment that affects the body in many ways. Humans venturing into the environment of space
can have negative effects on the body.
Objectives: This study focused on the effects of simulated microgravity on β-endorphin receptor concentration.
Methods: Rats (n = 16) were divided in two groups (n = 8/group), freely moving (control group) and hindlimb unloading. A rat-tail
suspension model was used in experiment groups for 14 days to explore the effect of simulated microgravity on the β-endorphin
receptor concentration in the hippocampus, brain stem, and prefrontal cortex.
Results: The results showed that the concentration of β-endorphin receptor in the brain stem and prefrontal cortex, but not in
hippocampus, was significantly higher in hindlimb unloading rats than controls.
Conclusions: It is possible that simulated microgravity may increase theβ-endorphin receptor expression in the prefrontal cortex
and brain stem in the rat.
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1. Background

Performing the simulated experiments of weightless-
ness helps researchers to perceive unknown dangers and
risks, which take place in an aircraft platform. These re-
searches can be the way to create a shortcut to enter an
important environment. Exposure to space flights is as-
sociated with several stress factors such as microgravity
and circadian alteration. These conditions can affect the
physiological function of human and animal organism (1,
2). These include cardiovascular, muscle and immune re-
lated problems, decreased bone mineral density, and cir-
cadian rhythm-related problems involving sleep and per-
formance (3). In addition, space travel has an array of ef-
fects, which are the causes of changes in some activities
namely eye movements, reflex control, respiratory, gas-
trointestinal, and CNS functions. The brain is affected by
space flight, which has pivotal effects on that (4). Testing
and research related to the conditions of weightlessness is
the way to develop and expansion of space medicine. Space
and weightlessness conditions, due to stress, can cause β-
endorphins secretion from the brain and hypothalamus.
The opioid system plays a central role in nociception and
analgesia. The analgesic effect of β-endorphin is greater
than morphine (5). It can also regulate numerous physi-

ological functions, including responses to stress, respira-
tion, gastrointestinal passage, and functions of endocrine
and immune systems (6). Relaxation and mental health is
one of the important factors during space flight, therefore
having enough information to predict changes in behav-
ioral and physiological events are necessary.

Opioid peptides and their receptors are widely ex-
pressed all over peripheral and central nervous system.
β-endorphin receptors are broadly distributed through-
out the human CNS, with a particularly dense distribu-
tion in the basal ganglia, cortical structures, thalamic nu-
clei, spinal cord, and specific nuclei in the brain stem (7-
11). High levels of this receptor are found in the basolat-
eral amygdala, nucleus accumbens, hypothalamus, thala-
mus, ventral tegmental area, and caudate putamen. β-
endorphin receptors, in the periaqueductal gray matter
mediate the anti-nociceptive effects of opioids. Many stud-
ies show that a variety of stressors activate β-endorphins
in rodents (12).

2. Objectives

Current information is limited regarding changes of
the content of neuropeptides and neurotransmitters in
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brain tissue during the space flight. Therefore, the goal of
this study was to examine the long-term exposure to micro-
gravity onβ-endorphin receptor concentration in a variety
of rat brain regions.

3. Methods

The experiment was conducted in the laboratory ani-
mal center and in compliance with the recommendations
of the animal care committee of the AJA University of Medi-
cal Sciences, Tehran, Iran. All procedures used in this study
were conformed to the national research council (NRC)
guide for the care and use of laboratory animals. A total
of 16 randomly selected adult male Sprague-Dawley rats
(250 - 320 g body weight) were housed in individual cages
under controlled temperature (22°C), humidity (~ 40%),
and lighting (12 - 12 h light-dark cycle) conditions, with
free access to food and water. The rats were divided into
two groups (n = 8/group) of freely moving (control group)
and hindlimb unloading rats. According to the method
of Morey- Holton, we used tail suspension model to simu-
late microgravity (13, 14). The rats in the experiment groups
were suspended by the tail base to produce a 35 - 45° head-
down tilt position allowing the forelimbs to maintain con-
tact with the grid floor and the rat to move in a circular area
to gain access to food and water for 14 days.

After 14 days, the rats were fasted overnight, anes-
thetized with intraperitoneal injection of ketamine and xy-
lazin (100 and 2.5 mg/kg, respectively), and killed by exsan-
guinations. The entire brain was removed and was seg-
mented into brain stem, prefrontal cortex, and hippocam-
pus. Each sample was weighed, washed in ice-cold NaCl
solution (9 g/L), and then immediately frozen in liquid ni-
trogen. Tissues were homogenized in Tris-HCl buffer, pH
7.4 (tissue to buffer ratio, 1:10 w/v). The homogenate was
centrifuged (10 min, 14000 x g, 4°C). The supernatant was
diluted further (1:10, v/v) in Tris HCl buffer. Supernatants
were obtained after centrifugation. β-endorphin recep-
tor concentration was analyzed by ELISA technology us-
ing commercially available kits (CUSABIO, Wuhan, China),
according to the manufacturers’ instruction, which pro-
vided for tissue homogenates, cell lysates, and other bio-
logical fluids samples.

Statistical analyses were performed using SPSS v16. All
data are presented as means ± SEM. Statistical analyses
were performed using un-paired Student’s t-test for com-
parisons. For all analyses, P < 0.05 was considered statisti-
cally significant.

4. Results

The mean level of µ-receptor (ρg/100mg tissue) was
1700 ± 320 and 2743 ± 166 in the brain stem of freely mov-
ing and hindlimb unloading rats, respectively (P < 0.05;
Figure 1).
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Figure 1. β-endorphin receptor level in brain stem, prefrontal cortex, and hip-
pocampus in freely moving (control) and hindlimb unloading rats housed in a 12:12
h light–dark cycle. Data are expressed as mean ± SEM. *Different from control, P <
0.05.

The mean µ-receptor level of prefrontal cortex in the
hindlimb unloading rats (1410 ± 160) was significantly
higher than in the freely moving rats (743 ± 110) (P < 0.05;
Figure 1).

There was no significant difference in the mean µ-
receptor level of hippocampus between the hindlimb un-
loading rats (902 ± 77) and the freely moving rats (667 ±
88) (P > 0.05; Figure 1).

5. Discussion

Endocrine system appears to be sensitive to the con-
ditions of space flight including microgravity. During
space flights, most astronauts report a moderate to severe
headache due to cephalic fluid shifts (15). Fluid shifts itself
cause cranial venous congestion (16). β-endorphin exerts
an inhibitory regulation on the inflammatory responses
through the activation of µ-opioid receptors (17). β- en-
dorphin also induces vasoconstriction in CNS (18). In this
study, theβ-endorphin receptor level in the brain stem and
prefrontal cortex upregulated in the simulated micrograv-
ity condition. The probable mechanism is as follow. During
space flight and simulator conditions several stress factors
such as microgravity can affect the function of neuroen-
docrine system. Plasma levels of cortisol were markedly
increased in rats exposed to space flight (19). It has been
shown that cortisol inhibitsβ-endorphin secretion (20). It
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seems that following exposure to stress of unloading, cor-
tisol levels increase, which reduces β-endorphin, which in
turn upregulate its receptor.

Cortisol also counteracts insulin, contributes to
hyperglycemia-causing hepatic gluconeogenesis and in-
hibits the peripheral use of glucose that can cause insulin
resistance (21). Glucocorticoids impair insulin-mediated
glucose uptake by directly interfering with components
of the insulin-signaling cascade, such as glycogen syn-
thase kinase-3, glycogen synthase, and especially GLUT4
translocation (22, 23). In a long period, the increasing of
cortisol can cause hyperglycemia. In other words, insulin
sensitivity is reduced in astronauts during space flight
and microgravity condition (24).

Opioids play an important role in the regulation of glu-
cose homeostasis (25). It is possible that hypercortisolemia
and hyperglycemia, which are induced by microgravity,
can increase β-endorphin receptor concentration. This
study confirms one previous study on opioid mu-receptor
that showed that hyperglycemia was responsible for the in-
crease of opioid mu-receptor in STZ-diabetic rats (26).

It is shown that µ opioid receptor is involved in the
homeostatic regulation of immunological and inflamma-
tory reactions in the mouse gastrointestinal tract. The µ
opioid receptor gene expression is increased during in-
testinal inflammation (27). Increased migration of mono-
cytes and lymphocytes to the inflamed intestinal mucosa
are the major cause. Inflammation is often associated
with enhancement of µ opioid receptor axonal transport
(26, 27). During microgravity condition, activation of T
lymphocytes and inflammatory cytokines happened (28).
Beta-endorphins can reduce the inflammatory response
associated with the µ receptor (29). The alteration in β-
endorphin receptor concentration may also be due to this
reason.

5.1. Conclusion

It is possible that simulated microgravity may increase
theβ-endorphin receptor expression in the prefrontal cor-
tex and brain stem in a rat.
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