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Abstract

Since the number of prognostic and predictive neuro-oncologic genetic markers is steadily increasing, a comprehensive analysis of
the molecular techniques used to examine neuro-oncology samples is vastly required. Molecular analysis and profiling of brain ma-
lignancies result in improved diagnostic accuracy, target identification, and predictive prognosis. Application of high-throughput
molecular approaches, such as next generation sequencing (NGS), to analyze brain tumors has provided a large amount of molecu-
lar information. In the clinical practice, the application of NGS has been increased, which has consequently improved the treatment
option for brain cancer as well as other types of malignancies. Target therapy has recently become one of the most promising treat-
ment options for various tumors, especially brain tumors. In this review, we provided and summarized high-throughput genomic
studies, such as NGS technique, that could independently identify the integrated management and diagnosis of primary human
brain tumors across a variety of entities with pathognomonic genetic alterations.
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1. Context

According to the 3rd edition of the International Clas-
sification of Diseases for Oncology, tumors of the central
nervous system (CNS) are those affecting the spinal cord
and brain, including the pituitary gland, meninges, pineal
gland, and nerves (1). Brain tumors have been traditionally
classified based on the microscopic investigation of hema-
toxylin and eosin- (H & E) stained tissue sections. The in-
creased comprehensive knowledge in relevant genetic al-
terations and mutations with clinical outcomes resulted
in the incorporation of molecular signatures as a part of
the diagnosis, management, and treatment of CNS ma-
lignancies (2). Various brain cancer susceptibility genes
are involved in DNA damage response, which strongly in-
dicates that critical DNA repair pathways and checkpoint

controls are necessary for preventing tumor malignancy
(3). Since the number of prognostic and predictive neuro-
oncologic genetic markers is steadily increasing, compre-
hensive analyses of the molecular techniques used to ex-
amine neuro-oncology samples are vastly required for the
evaluation of brain tumor specimens in a modern pathol-
ogy setting. Molecular analysis and profiling of brain can-
cers lead to improved diagnostic accuracy, target identi-
fication and predictive prognosis (4). The recent devel-
opment of NGS technology and other complementary ge-
nomic platforms have transformed our capacity to investi-
gate the molecular landscapes of human cancers, includ-
ing brain tumors (5). In this review, we summarized and
analyzed the results of high-throughput genomic studies,
such as NGS, in order to diagnose various types of brain tu-
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2. Gliomas

Diffuse gliomas (DGs), the most common primary ma-
lignancy of the CNS, generally affect the cerebral hemi-
spheres of adults. According to the World Health Organiza-
tion (WHO) classification of the CNS tumors, lower-grade
gliomas or grades I and II DGs are oligodendrogliomas,
astrocytomas, and oligoastrocytomathat the latest is a
less well-defined type of oligodendroglial (OA) (6). It has
been reported that molecular landscape, such as 1p/19q co-
deletion status, is a better predictor of clinical outcome
than that of the histologic distinction between oligoden-
droglioma and OA (7). Therefore, the WHO has recently up-
dated the CNS tumor classification (8). In fact, NGS is an
effective technique for the detection of a wide variety of
molecular alterations, which provides an efficient, attrac-
tive, as well as a cost-effective unimodal molecular plat-
form for the classification of lower-grade gliomas based
on the 2016 WHO CNS criteria (9, 10). The results of the
sequencing of the samples obtained from patients with
lower-grade gliomas, which were organized by IDH1, IDH2,
and NGS-based 1p/19q co-deletion status, are shown in Fig-
ure 1 (11). Carter et al. have used a single, targeted NGS
panel to detect single-nucleotide variation and copy num-
ber variation in 50 patients with lower-grade gliomas, in-
cluding 36 oligoastrocytomas, 11 oligodendrogliomas, 2 as-
trocytomas, and 1 lower-grade gliomas. They have found
that NGS is superior to fluorescence in situ hybridization
(FISH) and immunohistochemistry in the detection of seg-
mental chromosomal mutation from whole-arm deletions
in glioma tumors (11). Targeted NGS for mutations in TP53,
ATRX, CIC, IDH1, IDH2, FUBP1, PI3KC, EGFR, H3F3A, TERT, BRAF,
PTEN, and NOTCH genes and for copy number alterations
of chromosomes 1p, 19q, 10q, and 7 has been also used to
classify DG (12) . Indeed, DGs could be classified as type I
(1p/19q codeletion, “oligodendroglioma”), type II (IDH mu-
tation, “astrocytoma”), type III (TERT mutation or 7+/10q
and 1p/19q intact, “glioblastoma”), and childhood glioblas-
toma (H3F3A mutation) (12).

3. Pilocytic Astrocytoma

Pilocytic astrocytomas (PAs) are WHO grade I CNS tu-
mors that are most common in children with the age of
less than 19 years old (0.84 per 100,000) with approxi-
mately 700 new cases being annually diagnosed in the
United States (13). Despite the WHO classification, these tu-
mors are still clinically referred to by other terms, includ-

ing optic glioma, cerebellar astrocytoma, and infundibu-
loma due to their certain anatomic sites and the distinct
predilection in young patients (14). Considering the dif-
ficulty in diagnosing PA using anaplastic features that
are exclusively based on morphology, applying the rele-
vant molecular biomarkers to diagnose the presence of
mitogen-activating protein kinase (MAPK) pathway alter-
ations are necessary (15). The results of whole genome se-
quencing have shown that single alterations of the MAPK
pathway are solely detected in almost all PA cases, indicat-
ing that PA represents a one-pathway disease (14). Activa-
tion of MAPK signaling through various described muta-
tions or alterations, the commonest tandem duplication
is located at 7q34 that leads to KIAA1459-BRAF fusion, is
present in most of the PA cases. Therefore, the identifica-
tion of a known mutation/alteration is useful to support
the diagnosis of PA (16-18). To investigate the full range
of genetic alterations present in PA, the whole genome
sequencing of DNA obtained from blood has been per-
formed. Jones et al. have identified KIAA1549:BRAF fusion
variants, FAM131B:BRAF fusion, four BRAFV600E mutations,
and one BRAFins599T in pediatric brain tumors by NGS anal-
ysis (16). It has been also detected a new recurrent alter-
ation, namely mutation of two hotspot residues (N546 and
K656) in the kinase domain of FGFR1 that are occasionally
observed in adult glioblastoma (GBM) (19). The NGS anal-
ysis has also demonstrated that GIT2-BRAF fusion is identi-
cal to that detected in other fusion alterations in PA. This
fusion most likely acts as a tumor driver that activates the
MAPK signaling pathway (20).

4. Glioblastoma (GB)

Glioblastoma multiforme (GBM) is an extremely malig-
nant CNS tumor. Mutation and alteration of the epider-
mal growth factor receptor (EGFR) have been frequently re-
ported in various human malignancies, such as GBM (21).
However, the presence of multiple types or heterogeneous
mutations is one of the GBM hallmarks that leads to insuffi-
cient single-agent activity over standard treatments in pa-
tients with GBM (22). Therefore, the determination of pre-
dictive biomarkers can predict the fate of EGFR-targeted
therapy that resulted in help to the patients with GBM
and improved the treatment sensitivity. In addition, de-
tailed mutational analyses of brain tumors may reveal the
mechanisms underlying drug resistance that may finally
enhance the effectiveness of personalized cancer therapy
(23). Spatial heterogeneity in PDGFRA, TP53, and EGFR genes
in glial tumors has been previously identified (22). Further-
more, the results of NGS analyses have demonstrated the
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Figure 1. The results of the sequencing of the samples obtained from patients with lower-grade gliomas were organized by IDH1, IDH2, and NGS-based 1p/19q co-deletion status.
The presence of more than one variant is shown in multiple color boxes. WT, wild type; mut, mutant (Published by Carter et al. (11)).

presence of FLNA point mutation, p.V120M and EGFR mu-
tations, p.A289V pP772 delinsPPl, in the GBM patients (24).
Both MutSig and InVEx algorithms have been previously
identified as mutant genes in GBM patients, namely TP53,
EGFR, PTEN, PIK3CA, NF1, RB1, PIK3R1, IDH1, leucine-zipper-like
transcriptional regulator 1 (LZTR1) and PDGFRA (25). In addi-
tion to the alterations found in the signature oncogenes of
GBM, NGS analysis has revealed that more than 40% of GBM
neoplasms harbor at least one non-synonymous mutation
among the chromatin-modifier genes. Somatic alterations
analysis by NGS confirmed mutual exclusivity among alter-
ations affecting Rb pathway (CDK4, CDK6, CCND2, CDKN2A/B
and RB1), p53 pathway (MDM2, MDM4 and TP53), and dif-
ferent components influencing PI3K pathway (NF1, PIK3R1,
PIK3CA, EGFR, PTEN, and PDGFRA) (25). Ballester et al. (2) have
studied mutations of cancer-associated genes in 381 pa-
tients with brain tumor using commercially available NGS
panels. They have found that 32% of cases with anaplas-
tic ependymoma, atypical choroid plexus papilloma, and
anaplastic meningioma showed no mutations in any of the
regions of PNET, and DNET examined by NGS assay; similar
to those detected in 37% of glioblastomas, 85.7% of ependy-
momas, and 100% of medulloblastomas. While, the most
commonly mutated genes in brain tumors were TP53, IDH1,
PIK3CA, PTEN, and EGFR with a frequency of 37.2%, 29.4%, 8%,
8%, and 7.5%, respectively (2). The most commonly mutated
genes detected in GBM patients are TP53, IDH1, PTEN, EGFR,
and PIK3CA with a frequency of 35.9%, 14.6%, 10.8%, 9.2%,
and 8.4%, respectively. Moreover, the majority of GB and
astrocytomas cases with one IDH1 alteration or mutation
also have a TP53 mutation (87.5% and 84.9%, respectively).
In grade II/III or astrocytomas, the frequency of TP53 and

IDH1 mutations was significantly higher than other gene
mutations, 59.0% and 63.8%, respectively. Moreover, PTEN
mutations have been reported to be more common in GB
than in lower-grade astrocytomas II/III. The most common
mutations detected in anaplastic oligodendrogliomas are
IDH1 (76.19%), followed by TP53 (23.8%), and PIK3CA (19.0%).
In oligodendrogliomas (WHO grade II) the most common
mutation are IDH1 (81.8%), PIK3CA (9%), and NRAS (9%) (2).
Genetic analysis has been shown that recurrent mutation
in IDH1 gene in most GBM cells. Deng et al. (26) have re-
ported that the patients with grade IV primary GBM exhib-
ited mutations in IDH1 and IDH2 with a frequency of 6.98%
and 4.65%, respectively. They have reported that the fre-
quencies of IDH1 and IDH2 mutation in grades II, II-III and
III of brain glioma tumors are higher than those of grades
I and IV (26).

However, several retrospective clinical trial studies
have revealed the presence of wild-type IDH1 in GBM with
bad prognostic outcomes compared to IDH1 mutation. The
prognostic importance of IDH1 gene mutation has been re-
cently identified in patients with GBM. Multiple studies
have reported that the mutation of IDH1 acts as an impor-
tant and independent factor for the progression-free sur-
vival as well as predicting longer overall survival in pa-
tients with GBM (27). In addition, the recent meta-analysis
study has shown that GBM patients with epigenetic muta-
tions such as MGMT methylation are also associated with
longer overall survival not in progression-free survival (28).
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5. Ependymoma

Ependymomas originate from different regions of the
CNS with histological similarities. However, these tumors
possess site-specific prognoses as well as genetic and tran-
scriptional profiles alterations (29, 30) Nine supratentorial
ependymomas (SE) have been recently analyzed by whole
genome sequencing and it has been revealed that more
than two-thirds of the SE tumors contain oncogenic fu-
sions between RelA, the canonical NF-kB signaling member,
and an uncharacterized gene, C11orf95 (31). These data have
demonstrated that genetic alterations of RelA in human
cancer are highly recurrent. In addition, the RelA-C11orf95
fusion protein can be a potential therapeutic target in the
SE (31). Structural variations within chromosome 11 (11q12.1
and 11q13.3), producing catastrophic disruption of the lo-
cus, have been also detected by NGS in patients with SE (31).

6. Medulloblastoma (MB)

Medulloblastoma (MB) is the commonest primary ma-
lignant brain tumor in pediatric patients. Overall survival
rates for patients with MB have reached 70% - 80% using the
combination of surgery, craniospinal radiotherapy, and
chemotherapy (32). The current consensus is that MB con-
sists of four subgroups, including WNT, SHH, groups 1 to
4 that exhibit highly disparate mutational spectra, cytoge-
netics, and gene expression signatures (33). Medulloblas-
toma has been now considered four distinct diseases, each
of which requires distinct therapeutic approaches (33).

The WNT subgroup of MB often carries heterozygous
TP53 mutations and harbor nearly ubiquitous CTNNB1 mu-
tations (34). The WNT subgroup of MB exhibits largely bal-
anced genomes, with the exception of monosomy 6 that
is a hallmark chromosomal aberration detected in almost
all cases with WNT subgroup of MB; however; it is very
rarely reported in other MB subgroups (35). Germline mu-
tations that affect negative regulators of the SHH signal-
ing pathway, either PTCH1 or suppressor of fused homo-
logue (SUFU), induce the development of SHH-driven MB
(36). The genome of the SHH subgroup of MB contains
more remarkable chromosomal loss and gain regions such
as partial deletions of chromosomes 9q and 10q as well
as other less common aberrations than that of WNT sub-
group of MB (37). In addition, MB tumors harboring muta-
tions in the key SHH pathway target genes (i.e. GLI1 and 2,
or MYCN) may have an inherent primary resistance against
antagonists of SHH pathway signaling (37). Amongst four
subgroups of MBs, the worst therapeutic outcome belongs
to patients with group 3 MB (37). The high-level of mu-
tation/amplification of the MYC proto-oncogene is highly

enriched in this subgroup so that all cases mostly exhibit
aberrant MYC expression (38). This subtype also exhibits
high levels of genomic instability and often harbors dele-
tions of 17p and 10q, 11q, and 16q as well as gains of chromo-
somes 1q, 7q, and 17q (37).

The most common subgroup of MB is the group
4. Cyclin-dependent kinase 6 (CDK6) and MYCN proto-
oncogenes are recurrently amplified in the group 4 medul-
loblastomas (38). Also, i(17q) has been found in the major-
ity of cases with this subgroup and most female patients
lose one copy of the X chromosome (35).

A significant discovery in the genetic landscape of MB
was made in 2011, when the first unbiased whole exome
sequencing study of medulloblastoma was published. So-
matic mutations in mixed-lineage leukemia (MLL) 2, MLL3,
and histone methyltransferases (HMTs), were identified in
some of MB cases based on Sanger sequencing (39).

Next generation sequencing of all four subgroups of
MB was published in a single issue of Nature (Figure 2).

7. Neuroblastoma

Neuroblastoma (NB) is the most common solid tumor
in children under the age of 10 years, contributing to ap-
proximately 15% of childhood cancer-related deaths (40).
They are highly heterogeneous and represent a wide spec-
trum of clinical manifestations, as well as the likelihood
of being cured, ranging from spontaneous regression
to relentless progression despite multimodal treatments.
These diversities in tumor behavior can be attributed to
differences in the extensive underlying molecular mech-
anisms. Numerous genetic alterations are suggested (41).
Germline mutations, namely anaplastic lymphoma kinase
(ALK) and paired-like homeobox 2B (PHOX2B), mainly oc-
cur in familial NB (FNB). However, mutations in ALK gene,
which lie in human chromosome 2p23, are more common
than those in PHOX2B gene. In FNB, ALK mutations dom-
inantly occur in coding areas, including hotspots R1275,
F1245, and F1174 (42). Among these hotspot loci, not only
the R1275Q mutation is the commonest germline ALK mu-
tation, which occurs in hereditary NB, but also is the most
common somatic ALK alteration (43).

Several common copy number variations [CNVs]) and
genomic variables (single nucleotide polymorphisms
[SNPs]) associated with sporadic NB have been identified
using NGS. The first category of genomic variables was
detected in high-risk patients with NB, including CNVs/14,
BARD1, LMO1, LIN28B, and HACE1. While, low-risk gene
mutations, such as DUSP12, DDX, IL31RA and HSD17B12
have been found in the second category. The variation of
germline copy numbers, for instance, NBPF23 gene, has
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Figure 2. Meta-analysis of MBNGS studies (published by Northcott et al (35)) is represented.

been detected in the third category (44-46). Common
SNPs on chromosome 6 (6p22) within CASC14 and 15 genes,
which are associated with NB risk, have been reported by
Maris et al. (47). The relationship between invasive NB
and several SNPs in BRCA1 associated with RING domain 1,
which is located in the area 2q35 on human chromosome,
has been also reported (48).

8. Meningiomas

Meningiomas are the most reported primary tumors
of the CNS in adults. All exons of known frequently mu-
tated genes in these neoplasms, including ARID1A, AKT1,
AKT3, ATRX, CHEK2, CREBBPKDM6A, KDM5C, NF2, PRKAR1A,

KLF4, PIK3R1, PIK3CA, POLR2A, PDCD10, SMARCB1, PTEN,
SMARCE1, SMO, SUFU, TERT, and TRAF7, have been iden-
tified using NGS assay (49). A genetic variation between
progestin-associated meningiomas and non-hormonal
treatment meningioma has been also reported. The two
most frequent mutated genes in meninigioma are TRAF7
and NF2 (50). However, the higher frequency of PIK3CA
and TRAF7 mutations and a lower frequency of NF2-related
meningioma tumors have been reported post-long-term
progestin therapy and targeted NGS (51). The mutational
profile of progestin-associated meningiomas is illustrated
in Figure 3 (51).
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Figure 3. Mutation status and copy number alterations used for profiling progestin-associated meningiomas. The top and bottom panels display mutation status and copy
number alterations, respectively (published by Peyre et al. (51)).

9. Astroblastomas

Astroblastoma is a rare and controversial primary
brain tumor that is mostly diagnosed using histological
approaches. This tumor typically displays indolent behav-
ior with good prognosis; however, some of its variants
are occasionally aggressive and infiltrative (52). The anal-
ysis of genomic alterations of astroblastoma has demon-
strated that chromosomal gain is evident in arms of 20q,
9q, and gain of chromosome 19 as well as rare losses of
chromosome 10 (52). Next-generation targeted exome se-
quencing of 300 cancer-related genes for astroblastoma
was performed by Bale et al. (52). The NGS analyses of
these genes in patients with astroblastoma have revealed
multiple monosomies involving chromosome 10 (leading
to single-copy loss of PTEN), polysomy of chromosomes 5,
9, 13 (resulting in single-copy loss of RB1), and 18, single-
copy loss of 6q (including MYB and PARK2), and the loss of
a region of one to two copies at 9p23-9p11.2, possibly lead-
ing to homozygous deletion of the tumor suppressor gene,
CDKN2A. In addition, out of four cases with astroblastoma,
two patients showed SETD2 variations (52).

10. Discussion

In this review study, we summarized and analyzed
the results of high-throughput genomic studies, such as

NGS, that can independently identify the integrated diag-
nosis of brain tumors, including glioblastoma, pilocytic
astrocytomas, medulloblastomas, ependymomas, neurob-
lastoma, meningiomas, and astroblastoma across a vari-
ety of entities with pathognomonic genetic alterations.
In adults, the most common primary brain tumors are
gliomas, such as glioblastomas, astrocytomas, oligoden-
drogliomas and ependymomas, displaying variable bio-
logical behaviors. Approximately, 250,000 people world-
wide are annually diagnosed with brain cancers (53). Hu-
man primary or intrinsic brain and CNS neoplasms indi-
cate characteristic molecular signatures consistent with
tumor type. Numerous studies have recently focused on
analyzing genomic alterations in brain tumors. Detec-
tion of alterations or mutations in specific genes of some
brain tumors, such as glioma, has revolutionized our un-
derstanding of the pathogenesis of many types of glioma
(54).

The diagnosis, management, and treatment of pa-
tients with intrinsic or primary brain tumors have been
previously dependent on a classification system using
protein expression levels, microscopic and immunohis-
tochemical examinations. The increased knowledge of
relevant genetic alterations or genomic landscape of pri-
mary human brain tumors and clinical outcomes led to
the incorporation of molecular signatures in the diagno-
sis, management, and treatment of brain malignancies
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(55). Based on the latest WHO classification of the CNS
tumors (2016), molecular investigations of primary brain
tumors have become an important part of the diagnos-
tic workup of human CNS tumors (8). The advances in
sequencing technologies have recently resulted in the in-
corporation of NGS assays in many clinical diagnostic lab-
oratories and have increased the demand for identifying
molecular profiles of human brain tumors (4). It has been
demonstrated that there is a significant histological over-
lap between brain tumors, such as astroblastoma with GB,
particularly in the absence of characteristic molecular sig-
natures of the tumor (56).

In total, NGS is an attractive, efficient, and cost-effective
technique in detecting a wide variety of molecular alter-
ations, including genomic mutations such as insertions
and deletions (indels), CNVs, single-nucleotide variations,
and SNPs, which make it as a supplier unimodal molecular
platform for the classification of human brain tumors.

Genomic characterization of brain neoplasms has
been recently performed using NGS and has resulted in
the generation of a large amount of information that can
be very usual in the practice of neuropathology (4). The
NGS analysis has shown that the most clinically relevant
genes for brain neoplasms are TP53, IDH1, IDH2, PIK3CA,
EGFR, BRAF, PDGFRA, and FGFR1, 2 and, 3. According to the
2016 CNS WHO guidelines, molecular testing of IDH1 and
2 genes are critical for the diagnosis and management of
diffuse gliomas. As TP53 mutations are rare in neoplasms
with 1p/19q co-deletion, TP53 can be helpful to identify DGs
that are 1p/19q-intact (2). The commercial NGS assay serves
to detect IDH-wild-type, IDH, and TP53-mutant status in dif-
fuse glioma. The combination of a separate assay to iden-
tify 1p/19q status using NGS is also helpful for the molecular
classification of most of gliomas such as GBM based on the
latest WHO CNS tumor classification. The expression or ge-
nomic profiles of BRAF, PIK3CA, PDGFRA, EGFR, and FGFR1, 2
and 3 can be helpful to choose the most appropriate thera-
peutic approach (2).

11. Conclusions

This review study indicates that the NGS technique can
refine or independently help in the integrated diagnosis
of intrinsic primary human brain tumors across a variety
of entities with pathognomonic genetic mutations. Fur-
thermore, the utility of a limited, targeted, hybridization-
capture-based NGS panel in identifying the relevant al-
terations is necessary for subtyping of gliomas using the
recent WHO CNS tumor classification (updated 2016). It
has been emphasized that relevant histopathological and

molecular information is required to improve the accu-
racy of management and diagnosis of primary human
brain tumors. The recent breakthroughs made in the field
of brain tumor genomics and NGS studies may influence
ongoing basic research and help to choose the most appro-
priate therapeutic approach.
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