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Abstract

Context: The retina is a part of the Central Nervous System that is easy to study. The visual disturbances are frequent in Alzheimer’s
disease (AD) patients and sometimes, the AD begins with visual symptoms. This paper aims to review the existing literature on the
involvement of the eye in the AD. In this first part, the animal models and the pathology in humans were examined.
Evidence Acquisition: The Medline literature until March 2018 was surveyed.
Results: Both animal models and pathological studies in humans demonstrate the impairment of the visual system in the AD, often
in the early stages.
Conclusions: A frequent and sometimes early involvement of the visual system was demonstrated but new studies are needed in
order to investigate the degree of the visual impairment and in the animal models, the importance of the visual deficits in evaluating
the cognitive deficits.
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1. Context

The Alzheimer’s Disease (AD) is normally regarded as
a cognitive disease. However, evidence shows the typi-
cal lesions of the AD not only in the brain but also in
the spinal cord or even outside the Central Nervous Sys-
tem (CNS). Non-cognitive symptoms, mostly motor or psy-
chiatric symptoms, are also recurrent in the AD (1). The
retina is a part of the CNS easy to study. The visual distur-
bances are frequent in AD patients (2) and sometimes the
AD begins with visual symptoms (3). Therefore, many re-
searchers examined the eye and particularly the retina to
confirm the diagnosis and monitor the disease’s develop-
ment and its response to drugs. This paper aims to review
the existing literature on the involvement of the eye in the
AD. In this first part, the animal models and the pathology
in humans were examined.

2. Evidence Acquisition

The Medline literature until March 2018 was surveyed
using “model of AD”, “transgenic model of AD”, “ocular
changes in model of AD”, “vision in AD”, and “visual impair-
ment in AD” as keywords. Others studies were identified by

reviewing the relevant bibliography quoted in the original
papers.

3. Results

3.1. Animal Models

Ning et al. (4) showed amyloid ß (Aβ) deposits in the
ganglion cells of the transgenic APP/PS1 mouse and in the
neurons of the inner nuclear layer of the retina which both
accumulate with age. Perez et al. (5) found retinal Aβ
plaques in the APPswe/PS1∆E9 transgenic mouse at the age
of 12 - 13 months associated with a significant increase in
microglial activity. In the brain of these mice, Aβ plaques
were found at the age of 2 - 6 months. Accordingly, the
authors reported electroretinogram abnormalities. In the
same model, Gupta et al. (6) confirmed the accumulation
of Aβ in the retina, as well as inner retinal degenerative
changes. Dutescu et al. (7) found the strong cytoplasmatic
expression of the amyloid precursor protein (APP) in the
retinal ganglion cells and in inner nuclear layer cells of
the lens and corneal epithelia of 2-18-month-old transgenic
mice with the double Swedish mutation. In the retinas,
the authors also found proteolytic products that had not
been detected in the cerebellum. In another rat model,
the Tg2576 mouse, Liu et al. (8) found Aβ plaques with
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increased retinal microvascular deposition in the retina.
Amyloid peptide vaccination reduces retinal Aβ deposits
but increases retinal microvascular Aβ deposition and ex-
acerbates microglial infiltration and astrogliosis with dis-
ruption of the retinal organization. In the double trans-
genic mice APPswe/PS1∆E9, Koronyo-Hamaovi et al. (9)
could detect Aβ plaques in vivo, both in the retina and in
the brain, after administering curcumin. Because at the
age of 2.5 months, plaques could only be detected in the
retina but not in the brain, it could be inferred that the reti-
nal damage may be an early AD marker. However, retinal
plaques were not detected in another model, the non-Tgwt
mice. In this model, Yang et al. (10) confirmed a twofold in-
crease in microglia, prominent inner retinal Aβ, paired he-
lical filament-tau, and decreased retinal ganglion cell layer
neurons. They also showed that bone marrow transplanta-
tion has a protective action against retinal degeneration,
resulted from alterations in the immune function and ox-
idative stress. Gasparini et al. (11) showed early axonopa-
thy and accumulation of hyperphosphorylated tau in the
retinal ganglion cells of P301S transgenic mice at the age
of 5 months, both typical indicators of the initial stages
of the AD. Blurred optic disc margin was also detected by
ophthalmoscopic examination. In the same model, Schon
et al. (12) demonstrated in vivo fibrillar tau in the retina
and an increase in the tau pathology over several months,
thus stressing how the retinal pathology precedes the cere-
bral pathology; hyperphosphorylated tau was also found
in the retinas of 5/6 AD patients. In another AD model, the
APP/PS1 mouse, hyper-expression of the phosphorylated
tau was equally found in the retina, while there was little
or no sign in the optic nerve, in the cornea, and in the lens
(13). A marked thinning of the retinal choroid has been
observed in the TgF344-AD rat model and in humans; in
this model, visual acuity was lower than in age-matched
rats (14). Antes et al. (15) studied the effects of Apolipopro-
tein E4 (APO E4), the most prevalent genetic risk factor for
the AD, in transgenic mice. They reported that the synap-
tic density of the outer and inner retinal plexiform layer
was significantly lower in the APO E4 mice than in the
APO E3 mice; similarly, the responses to electroretinogra-
phy were different. The authors hypothesized that both
rods and cones pathways are affected by the APO E geno-
type. Perez de Lara et al. (16) showed an increase in the
retinal adenosine triphosphate (ATP) in mice; according
to the authors, this may contribute to the changes in the
functionality of the retina and in the death of the retinal
cells. In the aluminum-fed mice, 5xFAD Tg-AD markers for
inflammatory pathology appeared both in the brain and
in the retina (17). Edwards et al. (18) focused on macroglia
changes in the triple transgenic mouse (3XTG-AD). They
found glial activation at 9 months of age that increased

with age and abnormal glial structures; besides, the reti-
nal glial activation preceded that in the brain. More and
Vince (19) proposed a spectrophotometric technique to de-
tect imaging in early stages of the AD and subsequently
detected amyloid aggregates in the retina of transgenic
APP/PS1 mouse at 4 months of age, while these were absent
in the brain. Oliveira-Souza et al. (20) in the mouse Tg-
SwDI noticed cell loss in the photoreceptor layer and inner
retina, specific cholinergic cell loss, and increased astro-
cytic gliosis. Age-related macular degeneration (AMD) is
the most common cause of blindness in the aging popula-
tion. The senescence-accelerated OXYS rats develop cogni-
tive deficit similar to those seen in the AD (21) and Aβ accu-
mulates in the retina causing neurodegeneration and pro-
gressive loss of photoreceptors (22). Degeneration of pho-
toreceptors was also observed in a model of Drosophila; in-
terestingly, the degeneration of photoreceptors precedes
the appearance of Aβ plaques (23). A promising model
is the Octodon Degus, a rodent species endemic to South
America, which developed Aβ and tau pathology in the
brain and showed a cognitive decline as a result of aging,
suggesting that this rodent is a natural model of the AD.
Du et al. (24) detected amyloid peptides, oligomers, and
phosphorylated tau with a higher incidence in the retina
of adult animals. Hurley et al. (25) confirmed these re-
sults, as well as the presence of a cataract. Some authors
have claimed a reduction in the number of retinal gan-
glion cells; yet, these results have remained controversial
(see Pathology in humans). In particular, Williams et al.
(26) conclusions on the reduced dendritic integrity of the
retinal ganglion cells accompanied by the absence of soma
loss in transgenic animals (Neurobiology of Aging 2013)
have been recently disputed. In an accurate work, Chid-
low et al. (27) detected amyloid plaques in the cerebral cor-
tex and hippocampus of the APPswe/PS1∆E9 mouse since
the age of four months whereas, in the retina, the plaques
were found at the age of 12 months. Moreover, they were
unable to demonstrate the presence of dystrophic neu-
rites, retinal thinking, neuronal loss, synaptic shrinkage,
gliosis, oxidative stress, tau hyperphosphorylation, upreg-
ulation of cytokines, or stress signaling molecules in the
retina. Using manganese-enhanced Magnetic Resonance
Imaging (MRI). Gallagher et al. (28) demonstrated, in mice
knocked for the APP gene, the reduced axonal transport
along the fiber tracts from the hippocampus to the amyg-
dala and basal forebrain and in the visual pathways from
eye to midbrain and superior colliculus. Two mice models
of the AD, one expressing Aβ plaques and another express-
ing neurofibrillary tangles, were impaired in the visuospa-
tial capabilities and not in the olfactory (29). Finally, in the
transgenic mouse, the increased frequency of cataract was
found (30).
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3.2. Pathology in Humans

In the AD, neurofibrillary tangles and neuritic plaques
are usually preeminent in the hippocampus, entorhinal
area, and uncus whereas motor, somatic sensory, and pri-
mary visual areas are relatively spared (31). In the Lewis’ et
al. cases (32), neurofibrillary tangles were rarely present
in the primary visual cortex, but far more preeminent in
the adjacent visual association cortex and even more fre-
quent in the visual association cortex of the inferior tem-
poral gyrus. On the other hand, neuritic plaques showed
a less specific distribution. Ikonomovic et al. (33) found
reduced choline acetyltransferase activity in the primary
visual cortex in the AD patients but not in the MCI. How-
ever, in some cases, visual disturbances might be the first
symptoms of the so-called visual variant of the AD (34-36).
This suggests that selected cortical pathways linking the
primary visual regions to the posterior parietal and cin-
gulate visual association cortex may be involved in the
early stage of the AD. Hof et al. (37) found an increased
number of lesions in the visual areas of the occipital and
posterior parietal regions in AD patients presenting with
Balint’s syndrome. Similarly, using positron emission to-
mography (PET) in patients with the visual variant of AD,
Pietrini et al. (38) and Nestor et al. (39) found selective
hypometabolism in the occipitoparietal regions. Hof and
Morrison (35) found a selective damage to a subset of pyra-
midal cells in the primary and secondary visual areas of
classical AD patients. Leuba and Saini (40) examined the
subcortical visual centres (the lateral geniculate nucleus,
the lateral inferior pulvinar, and the superior colliculus)
and the primary visual cortex of AD patients without pre-
eminent visual symptoms, finding the evidence of senile
plaques and/or neurofibrillary lesions in all the examined
regions even more abundant than it had been previously
observed. Scinto et al. (41) described a selective damage to
the Edinger-Westphal nucleus while the adjacent somatic
portion of the oculomotor complex was virtually spared
of the pathology. In their opinion, such selective dam-
age may explain the pupillary hypersensitivity often ob-
served in the AD. On the other hand, Rub et al. (42) found
lesions also in the early stages of the cortical pathology
in the rostral interstitial nucleus of the medial longitu-
dinal fascicle involved in the genesis of vertical saccades.
The progression of the cortical pathology and of the in-
terstitial nucleus correlates significantly; nonetheless, in
their series, the pathology was significantly less severe in
the associated nuclei (the Edinger-Westphal nucleus, the
Darkschewitsh nucleus, and the interstitial nucleus of Ca-
jal). According to Rahimi et al. (43), the visual system of
patients suffering from tau pathology is progressively af-
fected along the visual pathways at least for a subset of pa-
tients. Several authors examined the optic nerve to subse-

quently reach different conclusions. Hinton et al. (44) and
Sadun and Bassi (45) found axonal degeneration of the op-
tic nerve. Similar results were referred by Blanks et al. (46);
the same authors also noted that the greatest decrease in
neuronal density happened in the foveal region, with the
temporal region of the central retina being most severely
affected (47). These authors also referred to an extensive
loss of neurons mainly in the superior and inferior quad-
rants and an increased astrocyte/neuron ratio (48). In the
optic nerve, Wang et al. (49) found the increased expres-
sion of the advanced glycation end products that were in-
volved in the pathogenesis of the AD mediating the trans-
port of the Aβ. These receptors are not specific to the AD
but are implicated in other inflammatory or degenerative
diseases. Koronio-Hamaovi et al. (9) showed Aβ in the
retina; Goldstein et al. (50) and Moncaster et al. (51) found
the Aβ in the lenses. La Morgia et al. (52) referred to the
age-related loss of optic nerve axons and melanopsin gan-
glion cell. However, others authors (53-55) did not find any
sign of optic nerve degeneration or deposits. Other au-
thors yet indicated only age-related alterations: Loffler et
al. (56) found an increase in amyloid precursor protein,
Curcio and Drucker (57) a reduced density of retinal gan-
glion cells, and Leger et al. (58) phospho-independent tau
deposits. Extracellular deposits called drusen are present
in age-related macular degeneration (AMD); some authors
found Aβ peptide (59) or non-fibrillar toxic oligomers (60)
in drusens. Yoneda et al. (61) found a decrease in the Aβ and
an increase in the tau in the vitreous fluid of patients with
diabetic retinopathy or glaucoma. Others claimed a rela-
tionship between AMD and Apolipoprotein E (APOE). The
APOE-ε2 is associated with an extended risk of AD whereas
the APO-ε4 is associated with a lower risk (62). However,
these results have been contested (see clinical studies).

4. Discussion

Considering the embryological origin of the retina and
the frequency of the visual disturbances in the AD, many
authors evaluated the possible involvement of the visual
system. Actually, pathological studies showed the typical
lesions of the AD in the visual system in the early stages;
but not all authors agreed about the stage of the dis-
ease when the lesions are detected or about their location
and frequency. The relative lack of pathological studies
could justify such findings but the existence of great inter-
individual variability is also possible. The animal mod-
els showed the involvement of the visual system; but in
this case, not all studies are in agreement possibly because
the different models of the AD have different characteris-
tics. For example, in the Tg2576 model, the onset of the
AD occurs at the age of 6 months with memory loss (63)
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whereas the P301S model shows motor impairment in the
early stage (64). Nevertheless, all models showed retinal al-
terations even at various extents that sometimes preceded
the cerebral lesions and in all models, the alterations are
prevalent in the inner layer (4-7, 14). This is of importance
considering the role of the visual disturbances in evalu-
ating the learning and the memory (65). In short, a fre-
quent and sometimes early involvement of the visual sys-
tem was demonstrated but new studies are needed in or-
der to investigate the degree of the visual impairment and
in the animal models, the importance of the visual deficits
in evaluating the cognitive deficits.
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