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Abstract

Background: Determining the activated brain areas due to different activities is one of the most common targets in functional
magnetic resonance imaging (fMRI) data analysis, which could be carried out by hemodynamic response function (HRF) evaluation.
The HR functions reflect changes of cerebral blood flow (CBF) in response to neural activity.
Objectives: In this study, five models of HRF estimation were evaluated based on a simulated dataset. Models with higher accuracy
were used to determine HRF parameters of the block-design fMRI data.
Methods: The fMRI data were acquired in a 3 Tesla scanner. For block-design fMR imaging, CO2 gas was administered using a face-
mask under physiological monitoring. Three patients with brain tumors were scanned. The fMRI data analysis was performed using
the SPM 12 MATLAB toolbox. Akaike’s information criterion (AIC), Schwarz’ Bayesian (SBC), and mean square error (MSE) criteria were
used to select the best HRF estimation model.
Results: In simulation studies, the estimated HRFs by the canonical HRF plus its temporal derivative (TD), finite impulse response
(FIR), and inverse logistic (IL) models were almost equal to the standard HRF. Mean square error, AIC, and SBC indices were ignorable
for TD, FIR, and IL models (MSE/AIC/SBC magnitudes for TD, FIR, and IL models were 0.052/-1235.1/-1223.9, 0.055/-1206.4/-1194.9, and
0.068/-1091.5/-1049.2, respectively), which indicates that these models could accurately estimate HRF in block design fMRI studies.
Conclusions: The HRF models could non-invasively evaluate the change of MR signal intensity under cerebrovascular reactivity
(CVR) conditions and they might be helpful to investigate changes in human cerebral blood flow.

Keywords: Functional Magnetic Resonance Imaging, Hemodynamic Response Function, Inverse Logistic Model, Finite Impulse
Response Model, Canonical HRF Plus Its Temporal Derivative Model

1. Background

In functional magnetic resonance imaging (fMRI) stud-
ies, the physical parameters of the brain change in re-
sponse to a given task. Regional increase in blood flow
rate is the parameter, which could be activated with a spe-
cific stimulation. Cerebrovascular reactivity (CVR) is the
change of cerebral blood flow in response to a vasoactive
stimulus (1, 2)

Determining activated brain areas due to different ac-
tivities is one of the most common targets in fMRI data
analysis, which could be carried out by hemodynamic re-
sponse function (HRF) evaluation (1, 3-6).

Neurovascular connections can be non-invasively stud-

ied based on the HRF information. Thus, HRF modeling
plays an important role in fMRI data analysis and evalua-
tion of the cerebrovascular diseases (4, 7, 8). The HR func-
tions reflect changes of cerebral blood flow (CBF) in re-
sponse to neural activity (1, 3, 4). This function is different
between subjects and has a significant variation between
brain regions. Therefore, correct HRF modeling could en-
hance the accuracy of fMRI studies (1). Intensity, onset la-
tency, and duration of the underlying brain metabolic ac-
tivity were evaluated based on HRF shape characteristics
(including height, delay, and duration) (5). Hemodynamic
response function parameters, including time to peak (T)
and height (H) provide information about brain area acti-
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vation, and full-width at half-max (W) of a stimulated HRF
determines the time of activity (5).

The fMRI task design has a considerable effect on the
efficiency and detection power of the study. Previous stud-
ies indicated that event-related designs have high estima-
tion efficiency with poor detection power. However, good
detection power at the cost of low estimation efficiency is
achieved using block designs (9). Block designs are mostly
used in BOLD fMRI studies. Therefore, selection of the best
model to estimate HR functions in block design studies
could have a critical role in patient data analysis.

2. Objectives

In this study, five models including gamma (GAM) (10),
inverse logistic (IL) (11), the canonical HRF plus its tem-
poral and dispersion derivatives (DD), canonical HRF plus
its temporal derivative (TD) (12, 13), and finite impulse re-
sponse (FIR) models (14, 15) were evaluated to estimate HR
function of a simulated dataset. Models with higher ac-
curacy were used to determine HRF parameters of patient
data.

3. Methods

3.1. Hemodynamic Response Function Models

The relationship between blood oxygenation level de-
pendent (BOLD) response and stimulus is presented using
the Equation 1:

(1)Y = (s× h) (t)

Where y (t) is the signal at time t and is the convolution
between the hemodynamic response (h(t)) and stimulus
(s(t)) functions. In these studies, a fixed canonical shape is
assumed for h(t) (10).

The HRF was estimated based on five models, including
gamma (GAM), inverse logistic (IL), canonical HRF plus its
temporal and DD, canonical HRF plus its TD, and finite im-
pulse response (FIR) models. The Lindquist approach was
used to determine the HRF parameters (5).

3.2. HRF Model Selection

Akaike’s information criterion (AIC), Schwarz’
Bayesian (SBC), and mean square error (MSE) criteria
were used to select the best HRF estimation model. The
AIC, SBC, and MSE indices are described in Equations 2 - 4

(2)AIC = nln (SSE)− n lnn+ 2p

(3)SBC = n lnn (SSE)− n lnn+ 2 (lnn)

(4)MSE =

n∑
i=1

e2i /(n− 2)

Where n and p are sample size and number of param-
eters, respectively. The model with the least amounts of
AIC, SBC, and MSE had a better performance for HRF esti-
mations.

3.3. Data Simulation

The simulated BOLD signal was produced based on real
data. Changes have been regularly quantified in terms of
commencement and period of neural activity. The stimu-
lus function was convoluted with SPM’s canonical HRF to
produce the simulated signal. It was assumed that repe-
tition time (TR) and duration of stimulation were 3 and
120 seconds, respectively. The onset stimuli were presented
in 60 and 240 seconds. The dataset consisted of the BOLD
signal plus white noise. Furthermore, a random interper-
sonal variance with a standard deviation equal to one-third
of interpersonal variance was added to each time series.
On the simulation study, five models were fitted on the sim-
ulated BOLD signal. The simulation studies were repeated
one hundred times. The HRF features, including T, H, and
W indices, were extracted for each fitting model.

3.4. FMRI Data Acquisition

The fMRI data were acquired in a 3 Tesla Siemens (Mu-
nich, Germany) MAGNETOM TIM Trio scanner using a 12-
channel Matrix head coil (Siemens Medical Systems, Er-
langen, Germany). Functional MR images with BOLD con-
trast were acquired using an echo-planar imaging (EPI) se-
quence. The applied scanning parameters were: TR = 3 sec-
onds, TE = 30 msec, flip angle = 90°, matrix size = 64 × 64,
and voxel size = 3 × 3 × 3 mm3.

3.5. FMRI Task Design

For fMR imaging in block design, CO2 gas was admin-
istered using a face-mask under physiological monitoring.
The FMRI data were registered by administration of CO2 for
120 seconds with 60-second rest intervals. The HRF in the
cerebral areas with higher blood supply was determined
based on changes in blood CO2 level.

3.6. Data Processing

The FMRI data were processed using the MATLAB
software (version 8.6, The MathWorks TM, Natick, Mas-
sachusetts, United States). The simulation procedures
were repeated 100 times and the best HRF estimation mod-
els were selected. Then, these models were implemented
on the patient data. The fMRI data analysis was performed
using the SPM 12 MATLAB toolbox (Wellcome Trust Center
for Neuroimaging).
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3.7. Patient Data

Three patients with brain tumors (two males and one
female; mean age, 28.33 years; age range, 21 to 34 years)
were imaged. The study was approved by the local commit-
tee for medical research ethics. Informed consent was ob-
tained from the patients prior to the study.

4. Results

4.1. Data Simulation

The simulated signal is depicted in Figure 1A. For time
series estimation, the efficacies of the models were evalu-
ated. The standard and estimated time series by five mod-
els are shown in Figure 1B. As it could be seen from the Fig-
ure 1, the estimated signals by IL, FIR, and TD models are in
acceptable consistency with the standard time series.

For determining the best HRF estimation model, an
HRF was produced as the standard function and it was es-
timated by five HRF estimation models.

The standard HRF is illustrated in Figure 2A. Figure 2B
shows the estimated HRFs by five models. In Figure 2, the
standard HRF is also depicted. The estimated HRFs by IL,
FIR, and TD models were almost equal to the standard HRF.

A scatter plot was used to evaluate the model efficiency
for signal estimation. For the best model with acceptable
efficiency to estimate the simulated signal, spots would be
more closely located around the bisector of the first quad-
rant. The results of IL, FIR, and TD models are almost placed
around the bisector of the first quadrant. The simulation
procedures were repeated 100 times and the average val-
ues of H, T, and W parameters were registered. The charac-
teristics of the estimated HRFs (including H, T, and W) are
listed in Table 1. For each HRF estimation model, MSE, AIC,
and SBC indices were also listed in the Table 1. The standard
values for H, T, and W indices were 1, 7.5, and 5.5, respec-
tively. From the Table 1 and the visual evaluation, it could be
concluded that IL, FIR, and TD models present better HRF
estimation than the other models.

4.2. Patient Data Analysis

The efficiency magnitudes of five HRF estimation mod-
els were evaluated based on a simulated time series. The
best HRF estimation models were selected to analyze the
patient data. Three patients with brain tumors were im-
aged in block-design fMRI paradigms. The selected models
were used to estimate HR functions of the patient data.

Figure 3 shows cerebral regions with higher blood sup-
ply in three patients with brain tumors. The subjects’ data
were analyzed with P value = 0.001, voxel threshold = 20,
onset stimulus = 60 and 240, and duration of stimulation

= 120 seconds. For the patients, the areas with higher blood
supply were placed at the frontal, temporal, and occipital
lobes, respectively. Figure 4 shows the estimated signals us-
ing models at the cerebral area with higher blood supply.
The estimated HRFs by IL, FIR, and TD models are illustrated
in Figure 5.

The average values of H, T, and W indices at the regions
of interest (ROIs) are listed in Tables 2 - 4, respectively. The
MSE, AIC, and SBC indices are also listed in Tables 2 - 4 for
each model.

5. Discussion

The mentioned models were fitted on the simulated
signal in block-design studies. Figure 2A shows that all of
the models, except gamma, can fairly estimate simulated
BOLD signal. The standard and estimated HRFs by each
model are shown in Figure 2B. Figure 2 visually shows that
TD, FIR, and IL models estimate the simulated HRF. The es-
timated HRF by the DD model has a higher height than the
simulated HRF and the estimated HRF using gamma model
has a different time to peak than the simulated HRF. Also,
the estimated HRF using the IL model has a different time
to peak and height yet these differences could be ignored.
For simulation studies, which were repeated 100 times, av-
erage magnitudes of T, W, and H indices were registered.
For the canonical HRF plus its temporal derivative model,
the characteristics of the estimated HRF were closer to the
standard HRF. The MSE, AIC, and SBC indices were ignorable
for TD, FIR, and IL models, which indicates that these mod-
els could accurately estimate HRF in a block-design fMRI
study. From the model selection criteria and the character-
istics of the estimated HRFs, it could be concluded that TD
is the best model for HRF estimation.

In Lindquist et al.’s studies, seven models, including
canonical HRF, canonical HRF plus TD, canonical plus TD
and DD, FIR, sFIR, two-parameter gamma distribution,
and total three IL models were evaluated to estimate
HRF. The patients wore a heat arm band scaled in event-
related method (warm, mild painful, fairly painful and
pain threshold) and then they were imaged. The results
showed that the IL model estimates HRF better than TD and
sFIR models. The TD model yields the weakest estimation
of HRF (5, 11).

In this study three selected models were evaluated on
real data. Figure 5 shows the signals of cerebral areas with
higher blood supply and the results of the fitting models.
As it could be seen from the Figure 5, the models have been
acceptably fitted on the given signal, and TD model has the
best fitting trend line. A square region of interest (3 × 3
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Figure 1. A, the simulated signal in block-design method, TR = 3 seconds, onset = 60 and 240 seconds, duration = 120 seconds, block length = 420 seconds. B, The estimated
signals by five mentioned models. The standard time series is also depicted. Abbreviations: DD, the canonical HRF plus its temporal and dispersion derivatives, FIR, finite
impulse response; GAM, gamma; IL, inverse logistic; TD, the canonical HRF plus its temporal derivative models.

Table 1. The Characteristics of the Estimated HRFs by Five Modelsa

Standard TD DD GAM FIR IL

Time to peak 7.5 7.5 7 5.5 7 8.3

Height 1 1.008 1.178 0.7912 0.9992 0.8912

Width 5.5 5.5 5 5.5 6 5.8

MSE - 0.052 0.105 0.146 .055 0.068

AIC - -1235.1 -883.5 -175.8 -1206.4 -1091.5

SBC - -1223.9 -871.5 -165.7 -1194.9 -1049.2

Abbreviations: AIC, Akaike’s information criterion; DD, the canonical HRF plus its temporal and dispersion derivatives, FIR, finite impulse response; GAM, gamma; IL,
inverse logistic; MSE, mean square error; SBC, Schwarz’Bayesian criteria; TD, the canonical HRF plus its temporal derivative models.
aThe characteristics of the standard signal are also listed. For each HRF estimation model, MSE, AIC, and SBC indices are listed.

pixels in size) was extracted to evaluate the cerebral areas
with higher blood supply and their averages of T, W, and H
magnitudes. The MSE, AIC, and SBC indices were smaller

for the TD model. Unlike Lindquist et al.’s study, the TD
model has a better HRF estimation for block-design fMRI
data. In Lindquist et al.’s study, the IL model provides a
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Figure 2. A, illustration of the standard HRF. B, The standard and estimated HRFs by
five models. Abbreviations: DD, the canonical HRF plus its temporal and dispersion
derivatives, FIR, finite impulse response; GAM, gamma; IL, inverse logistic; TD, the
canonical HRF plus its temporal derivative models.

Table 2. The characteristics of HRF for a 32-year-old woman with brain tumor

IL Model FIR Model TD Model

Height 0.076577 0.071911 0.121912

Time to peak 4.184738 12.79348 4.195652

Width 3.934783 2.413043 3.043478

MSE 0.143363 0.23641 0.135698

AIC -266.9885 -196.4844 -273.88888

SBC -258.1636 -187.6595 -265.0638

Abbreviations: AIC, Akaike’s information criterion; FIR, finite impulse re-
sponse; IL, inverse logistic; MSE, mean square error; SBC, Schwarz’Bayesian cri-
teria; TD, the canonical HRF plus its temporal derivative models.

better HRF estimation for event-related data (5). In Shan
et al.’s study HR function (in block-design method) was
modeled using five models, including the canonical HRF
used in SPM8, canonical HRF, the sum of two and three
gamma functions, and the sum of three inverse logit func-
tions used by Lindquist et al. It was found that in the event-
related method, four IL models had a higher efficiency for
HRF estimation. However, the results of real data (in block-
design method) showed that two-gamma with six parame-
ters had the best HRF estimation (16).

Table 3. The characteristics of HRF for a 34-year-old man with brain tumor

IL Model FIR Model TD Model

Height 0.089164 0.099497 0.139391

Time to peak 4.21001 14.23241 4.265332

Width 3.334783 3.251252 3.122598

MSE 0.091099 0.186892 0.088393

AIC -330.416 -229.8149 -334.6386

SBC -325.8137 -220.9900 -321.5914

Abbreviations: AIC, Akaike’s information criterion; FIR, finite impulse re-
sponse; IL, inverse logistic; MSE, mean square error; SBC, Schwarz’Bayesian cri-
teria; TD, the canonical HRF plus its temporal derivative models.

Table 4. The characteristics of HRF for a 21-year-old man with brain tumor

IL Model FIR Model TD Model

Height 0.093541 0.075221 0.116532

Time to peak 4.205297 12.442018 4.152324

Width 3.652218 3.102328 3.25138

MSE 0.121870 0.220289 0.108532

AIC -289.6759 -206.7976 -305.9025

SBC -280.8510 -197.9726 -297.0776

Abbreviations: AIC, Akaike’s information criterion; FIR, finite impulse re-
sponse; IL, inverse logistic; MSE, mean square error; SBC, Schwarz’Bayesian cri-
teria; TD, the canonical HRF plus its temporal derivative models.

5.1. Conclusions

In the present study, HRF modeling of the cerebral area
with higher blood supply was investigated. For a simu-
lated dataset, HRF modeling was evaluated using five mod-
els. Based on the results, TD, FIR, and IL models were se-
lected for HRF modeling in a block-design method. These
models were used to analyze the block-design fMRI data
for patients with brain tumors. The results showed that
the TD model yields better HRF estimation to evaluate the
changes in human cerebral blood flow. These models could
be helpful to investigate the change of signal intensity un-
der CVR conditions, non-invasively.
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Figure 3. The standard views of the brain (transverse, sagittal, and coronal views) for three patients with brain tumors. For the patients, the areas with higher blood supply
are placed at the frontal (A), temporal (B), and occipital (C) lobes, respectively.
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