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Abstract

Alzheimer’s disease (AD) is a multifactorial and debilitating condition without precise etiology and definite cure burdened with
high monetary and human resources to the society around the globe. Given that Iranian traditional medicine has a valuable treasure
of medicinal plants with multi-dimensional effects, we designed this study to examine one week daily low single-dose treatment
protocol of 3 mg/kg Teucrium polium (TP) hydro-alcoholic extract effects on rat’s spatial memory performance and CA1 hippocam-
pal neuronal count in rat Aβ25-35 as an AD model. Animals were bilaterally microinjected with single 10µg/2µg intrahippocampal
Aβ25-35 fragment for the AD induction. After a two-week recovery period, daily intraperitoneal injection of TP for a week was ini-
tiated in Aβ-received TP-treated (treated) and TP-received animals (control). Spatial memory performance and CA1 neuronal count
were evaluated. TP significantly reduced time latency and distance swum during the first three days of the training protocol com-
pared with Aβ-received rats (sham). Probe reference test findings, however, were not statistically different in treated, sham, and
control groups. Intact CA1 hippocampal neuronal count showed a significant increase in Aβ-received TP-treated (case) rats in com-
parison with Aβ-received (sham) animals. It seems that the least reported low dose TP has the active chemical components capable
of memory enhancing effects in Morris water maze (MWM) setting and potential neuronal survival property in hippocampal tissue.
In spite of myriad claims against TP use, we should reconsider the matter and do more research to find the exact active ingredients
of various species of the plant plus possible underlying mechanisms for ensuring potential use for human clinical trials in AD and
other central nervous system-related diseases.
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1. Background

Teucrium polium (TP), a plant with medicinal prop-
erties from Lamiaceae family has long been used in Ira-
nian traditional medicine for various purposes such as di-
abetes, diarrhea, abdominal tension, pain, inflammation,
bacterial infection, convulsion, and dementia. The plant
is vastly distributed in countries such as Armenia, Spain,
Algeria, Tunisia, Turkey, Syria, Iraq, and Iran. Recent stud-
ies have confirmed wide ranges of diseases that can be af-
fected by plant use, including cancer, gastric disorders, vis-
ceral pain, diabetes, inflammation, infectious states, vas-
cular disorders, hepatic disease, rheumatism, and central
nervous system-related diseases (1, 2). TP has potent an-
tioxidant, anti-choline esterase, anti-inflammatory, anti-
apoptotic, and hippocampal neuronal survival properties
(3, 4). These multi-purpose effects can logically be designed

for various debilitating central nervous system-related dis-
eases such as AD.

2. Objectives

In this study, we used daily intraperitoneal (IP) single-
dose injection of TP (3 mg/kg) taken from a preliminary
study for a week to show its memory enhancing effects on
spatial memory performance and CA1 neuronal counts in
rat Aβ25-35 model of AD.

3. Methods

3.1. Animals

Thirty male Wistar rats aged 10 - 12 weeks and weigh-
ing 230 - 240 g equally divided into three groups as fol-
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lows: In the group 1 (sham), AD was induced by bilateral in-
trahippocampal microinjections of a single dose of 10µg/2
µL Aβ25-35 (Aβ). This is the dose which is used by previ-
ous investigators (5). Animals in this group received addi-
tional daily IP injection of 2 mL normal saline for a week.
In the group 2 (control), animals received daily IP injection
of TP (3 mg/kg dissolved in normal saline) for a week. This
dose has been taken from our previous study, which will
appear in a manuscript under publication (6). In the group
3 (treated), AD was induced by bilateral intrahippocampal
microinjections of single 10 µg/2 µL dose of Aβ25-35 (Aβ)
followed by daily IP injection of TP (3 mg/kg dissolved in
normal saline) for a week. Rats were kept in plexiglass
cages in the Department of Physiology, Tehran University
of Medical Sciences, at a constant temperature and humid-
ity with free access to water and standard chow in a 12-
hour light dark cycle. Procedures for care and animal han-
dling meticulously followed in accordance with Tehran
University Ethical Committee protocol (IR.TUMS.VCR.REC.
No. 1395.1392) and National Institute of Health (NIH) rec-
ommendations (7).

3.2. Drugs

Plant extract preparation. TP Lamiaceae plant was
gathered from Alborz mountains, 30 km northwest of
Tehran during spring. The aerial parts of the plant were
dried at ambient temperature and ground in a mortar to
make a powder form. To make the hydro-alcoholic extract,
2000 g of the prepared material was macerated in ethanol
and water (75/25 v/v) for 72 hours at room temperature. The
procedure was repeated 48 and 24 hours for further evap-
oration. The final remnants were filtered with Whatman
paper and kept in an oven for 36 hours at 55°C. Herbarium
samples were kept on record No. PMP-387 in pharmaceuti-
cal faculty, taxonomy department of Tehran University of
Medical Sciences.

3.3. Amyloid Beta (Aβ)

The chemical was purchased from Sigma Aldrich
CHEMIE GmbH (Riedstra Steinheim Germany). Two micro-
liters of pre-aggregated Aβ25-35 (5 µg/µL) solution were
dissolved in normal saline (pH = 8, pre-incubated for 72
hours at 37°C) and kept at -80°C before use.

3.4. Experimental Procedure

The spatial MWM memory test was carried out from 8
a.m. till 4 p.m.

Animals were acclimatized for a week in the new envi-
ronment and initially checked for health status, visual, lo-
comotive, tactile, and auditory capabilities. After general
anesthesia with IP co-injection of ketamine (75 mg/kg) and

xylazine (10 mg/kg), stereotaxic surgery was performed.
The animal’s head was symmetrically put in the apparatus
to have an exact skull flat head position. Head skin was
shaved and disinfected with a cotton bullet soaked in the
povidone iodine 10% solution. The scalp was cut in the mid-
line position to expose the skull sutures

We inserted two needle bur on animal’s scalp in streo-
taxic method at coordinates of -3.5 mm posterior to the
bregma,± 2 mm lateral to sagittal suture, and 2.8 mm ven-
tral to dura matter (8) for infusion of Aβ25-35 solution.Two
microliters of pre-aggregated Aβ25-35 (5 µg/µL) solution
was dissolved in normal saline (pH = 8, pre-incubated for
72 hours at 37°C) and bilaterally injected in the dorsal hip-
pocampus CA1 region to induce AD. After a two-week sur-
gical recovery, TP dissolved in normal saline at 7.4 pH and
was IP injected once a day for a week.

Animal’s body weight was monitored weekly for a suit-
able TP dose adjustment. Spatial MWM performance was
tested an hour post last TP dose on day 21st started from
the first study date by the observer blinded to the test out-
comes. In spatial MWM memory test, we followed the same
protocol in the previous study (9). The test started on day
21 till day 27 post AD induction in a circular black pool (150
cm diameter, 60 cm height) filled with tap water and in-
stalled in the room at ambient temperature. The water
tank divided equally into four quadrants. A transparent
circular small hidden platform submerged 1 cm under the
water and 20 cm away from the tank wall in the southeast
quadrant. Conspicuous English letters were mounted in
the room walls as the visual landmarks for the animal plat-
form location navigation.

On day 21, a training memory session held in both
dark and illuminated room with aluminum foil covered
and bare platform first. The animals were then wiped out
with a clean and dry fabric and returned to their respec-
tive cages for the reference memory task test an hour later.
The test was repeated each day for five subsequent days in
which the animal smoothly was put into the water from
a random quadrant while his face turning into the wall
for four 60 second trials each day with a 30 second within
trial rest. A mounted digital camera connected to the com-
puter setting equipped with the navigation recording soft-
ware (Radiab software 2.1, Nomirei Co., Tehran Iran) moni-
tored the swimming animal from the ceiling. Time, veloc-
ity, distance, and path track in different quadrants were all
recorded and processed. On day 26, probe test was carried
out to measure the reference memory through removal of
the hidden platform and allow the animals to start swim-
ming from the farthest point in the water tank for 60 sec-
onds. Time spent in the target quadrant, path track, goal,
and swimming distance were all then recorded and com-
pared in different study groups.
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3.5. Histological Exam

This method of staining is used to identify Nissl sub-
stance in the cytoplasm of neurons in paraformaldehyde-
fixed tissue sections. The Nissl bodies will be stained in
purple-blue granular hues. To prepare the stain, 0.1 g Cre-
syl violet powder dissolved in 100 mL distilled water (0.1%
solution) at first. Then 10 drops glacial acetic acid was
added to the solution and filtered. Gelatin coated slides
with hippocampal sections in different study groups were
mounted on special tissue racks and immersed in ethanol
100% for 5 minutes for defatting the slides’ surfaces. The
slides put in distilled water for 15 minutes first and floated
in prepared Cresyl violet solution. The slides were im-
mersed in distilled water again and removed for three
times and put into ethanol 95% for 2 minutes. Final de-
hydration was done via immersion of the slides into the
ethanol 100% for 2 minutes. Eventually, the slides were
placed in xylene solution for 10 minutes and removed for
air dry at ambient temperature. Stained slides were cov-
ered with cover slips using Entellan medium for light mi-
croscopic observation (10).

3.6. Statistical Analysis

Data were presented as mean± SEM. Two-way repeated
measure ANOVA for MWM escape through latency and
swum distance, one-way ANOVA for probe test, and neu-
ronal count with Bonferroni as post hoc were used in
GraphPad Prism statistical software version 6. The P < 0.05
was considered statistically significant. We have explored
the statistical significance between Aβ-received TP-treated
(treated) group compared to AD induced (sham) and TP-
received (control) animals.

4. Results

Daily IP administration of 3 mg/kg TP as hydro-
alcoholic extract for one week in Aβ-received animals
(Treated) group significantly decreased escape through la-
tency (Figures 1 and 2) and distance swum (Figures 3 and 4)
till the 4th day compared with Aβ- (sham) and TP-received
(control) groups. F(8,72) = 16.94, P < 0.0001 F(8,72) = 1.747,
P = 0.1022 respectively. The significant difference is shown
by respective asterix.

Time spent in target quadrant with removed hid-
den platform on day 26 showed no statistical significant
changes between the treated group compared to the sham
and control groups (P > 0.05, n = 10) (Figure 5). The in-
tact neuronal count percentage of the CA1 hippocampal
region, however, showed a significant rise in the treated
group compared to the sham (P < 0.0001, n = 3) and con-
trol groups (P < 0.0001, n = 3) (Figures 6 and 7).
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Figure 1. Animals received bilateral intrahippocampal microinjections of a single
dose of (10 µg/2 µL) Aβ25-35 followed by one week additional daily intraperitoneal
injection of 2µL normal saline (sham); and bilateral intrahippocampal microinjec-
tions of Aβ25-35 (10 µg/2 µL) followed by one week intraperitoneal hydro-alcoholic
extract of 3 mg/kg Teucrium polium dissolved in normal saline (treated). Data are
presented as mean ± SEM. ** Significantly different from Aβ-treated group at P <
0.01, *** significantly different from Aβ-treated group at P < 0.001 using repeated
measures two-way ANOVA.
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Figure 2. Animals received one week intraperitoneal hydro-alcoholic extract of 3
mg/kg Teucrium polium dissolved in normal saline (control); and bilateral intrahip-
pocampal microinjections of Aβ25-35 (10 µg/2 µL) followed by one week intraperi-
toneal hydro-alcoholic extract of 3 mg/kg Teucrium polium dissolved in normal
saline (treated). Data are presented as mean ± SEM and analyzed using repeated
measures two-way ANOVA.

5. Discussion

The present study shows that very low dose (3 mg/kg)
daily intraperitoneal injection of TP in the form of hydro-
alcoholic extract for a week in AD-induced animals
(treated) reduces escape through latency and distance
swum in spatial memory performance. Moreover, we have
observed an increase in live neuronal density in CA1 region
of the hippocampus compared with sham Aβ-received
group. This may be the first in vivo report for memory
enhancing effect and neuronal survival properties of the
plant at this very low dose. Although there is controversy
on the safety reputation of TP (11-13), our previous dose
response study of TP documented its safety at very low
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Figure 3. Animals received bilateral intrahippocampal microinjections of a single
dose of (10 µg/2 µL) Aβ25-35 followed by one week additional daily intraperitoneal
injection of 2µL normal saline (sham); and bilateral intrahippocampal microinjec-
tions of Aβ25-35 (10 µg/2 µL) followed by one week intraperitoneal hydro-alcoholic
extract of 3 mg/kg Teucrium polium dissolved in normal saline (treated). Data are
presented as mean ± SEM. **** Significantly different from Aβ-treated group at P <
0.0001 using repeated measures two-way ANOVA.
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Figure 4. Animals received one week intraperitoneal hydro-alcoholic extract of 3
mg/kg Teucrium polium dissolved in normal saline (control); and bilateral intrahip-
pocampal microinjections of Aβ25-35 (10 µg/2 µL) followed by one week intraperi-
toneal hydro-alcoholic extract of 3 mg/kg Teucrium polium dissolved in normal
saline (treated). Data presented as mean± SEM. **** Significantly different from Aβ
group at P < 0.0001 using repeated measures two-way ANOVA.

doses (3, 10, 30 mg/kg) vs. high doses (200 and 400 mg/kg)
(6).

Bilateral intrahippocampal injections of aggregated
Aβ25-35 have shown to produce MWM performance deficit
(9, 14). In the present study, escape latency and distance
swum showed a comparable increase till the fourth train-
ing day and reached the level of “only TP-treated” (con-
trol) animals. Different factors, which may play a part in
this response, are suggested to be TP dose and its route of
administration, spatial memory test length, Aβ fragment
used (15), time lapse between MWM test, and histological
assays. Additional factors such as neuronal migration, re-
generation and hypertrophy and even intrahippocampal
regional response differences to the toxic fragment (16),
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Figure 5. Animals received bilateral intrahippocampal microinjections of a single
dose of (10 µg/2 µL) Aβ25-35 followed by one week additional daily intraperitoneal
injection of 2µL normal saline (sham); one week intraperitoneal hydro-alcoholic ex-
tract of 3 mg/kg Teucrium polium dissolved in normal saline (control); and bilateral
intrahippocampal microinjections of Aβ25-35 (10µg/2µL) followed by one week in-
traperitoneal hydroalcoholic extract of 3 mg/kg Teucrium polium dissolved in nor-
mal saline (treated). Data are presented as mean ± SEM.
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Figure 6. Animals received bilateral intrahippocampal microinjections of a single
dose of (10 µg/2 µL) Aβ25-35 followed by one week additional daily intraperitoneal
injection of 2µL normal saline (sham); one week intraperitoneal hydro-alcoholic ex-
tract of 3 mg/kg Teucrium polium dissolved in normal saline (control); and bilateral
intrahippocampal microinjections of Aβ25-35 (10µg/2µL) followed by one week in-
traperitoneal hydro-alcoholic extract of 3 mg/kg Teucrium polium dissolved in nor-
mal saline (treated). Data are presented as mean ± SEM. **** Significantly different
from Aβ-treated group at P < 0.0001 using one-way ANOVA.

MWM stimulatory effect on memory and learning (17), and
possible recovery phenomenon (14) should be added to the
list. Time spent in target quadrant showed no significant
changes in probe reference test of different study groups
on day 26. This can be rationalized through nano-molar
toxic concentration to pico-molar protective change with
time due to recovery or compensatory phenomenon. Pro-
tective change maybe due to neuronal migration from sub-
granular zones and neurogenesis in cortical regions (17)
together with MWM training days induced dentate gyrus
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Figure 7. Neuronal architecture in CA1 region of hippocampus stained with Cre-
syl violet in bilateral intrahippocampal microinjections of Aβ 25-35 animals (sham)
(above) and daily intraperitoneal administration of 3 mg/kg hydro-alcoholic ex-
tract of Teucrium polium treatment for one week in Aβ-received animals (treated)
(below). The images were taken with ×400 magnifications. Aβ-received animals
(sham) had much less cell density, which is indicative of more dead neurons com-
pared to Teucrium polium-treated animals (treated). Note that cells with black cy-
toplasmic color with destructed nucleus and unmarked membrane are indicative
of total disorganized cells in Aβ-received animals (above). Cells with bright blue or
grey cytoplasmic color with round notable membrane and nuclear architecture can
be identified in Teucrium polium-treated animals (treated). Green and red arrows
are representative of normal and dead cells, respectively. Scale bars: 20 µm.

neurogenesis should also be responsible (18).
MWM spatial memory under performance linked with

neuronal loss in the CA1 hippocampal region in Aβ-
received rats is confirmatory evidence for neurotoxicity of
the material and ensure the accuracy of the rat AD model
used in the present study. However, escape through la-
tency and distance swum curve slopes and also probe test
result comparisons between study groups show a better
performance in Aβ-received rat model of AD than con-
trol and treated animals as mentioned earlier in other
works (19). Significant neuronal loss in Aβ-received ani-
mals (sham group), suggested to be induced via different
mechanisms such as neuroinflammation (20), neurode-
generation, apoptosis (15), oxidative stress, acetylcholine

esterase activation (14), synaptic plasticity, and dendritic
changes (21, 22).

Different researchers have suggested that the effects of
this plant extract might be due to one or several of its ac-
tive ingredients such as flavonoid, terpenoid, iridoid, and
phenilpropanoid glycosides (23), tannin, saponin, sterol,
β-caryophyllene, and diterpenoids (24, 25). The ingredi-
ents vastly differ based on the meteorological condition,
land physical and chemical characteristics, used plant
tissues, plant age, developmental phase, and harvesting
time. Many other active compounds with potential phy-
tomedicine properties, especially phytoestrogens based
on geographical distribution of the plant (2). Phytoestro-
gens that have been found in the plant are plant origin
estrogen-like compounds that mimic neuroprotective ef-
fects of endogenous estrogen with the least untoward se-
quels via its alpha and beta receptors distributed specifi-
cally in CA3 intrahippocampal region with potential estro-
gen receptor mediated cell survival signaling and memory
enhancing responses (4).

5.1. Conclusions

Despite remarkable literature findings against TP toxic
effects, recent reports have demonstrated potential ther-
apeutic properties of the plant and its active ingredients.
Further studies will clarify the possible beneficial use of
the plant extract in Alzheimer’s disease.
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