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Abstract

Promising therapeutic agents for the symptoms in animal models of fragile X syndrome (FXS) have not resulted in similar advances
in clinical trials of humans with FXS due to the dearth of tools to quantify their key cognitive and behavioral outcome measures with
optimal validity and reliability. Therefore, experts strongly recommended an effort to develop and implement use of biomarkers
in unfolding clinical trials in FXS. Molecular imaging provides a spectrum of agents to serve as biomarkers to confirm that humans
with FXS exhibit the molecular abnormalities of animal models of FXS. Thus, molecular imaging provides the mechanism to estab-
lish target engagement in humans for clinical trials of novel agents for FXS.
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1. Background

Fragile X syndrome (FXS) leads the way for targeted
treatments in autism spectrum disorder (ASD) as its most
common known single gene cause (1-3). FXS is typically
caused by an expansion (> 200, full mutation) of a CGG re-
peat in the promoter region of the fragile X mental retarda-
tion 1 (FMR1) gene, leading to complete or partial methyla-
tion of the promoter and insufficient fragile X mental re-
tardation protein (FMRP) (4). The FMR1 gene-encoded RNA-
binding protein regulates the brain development by trans-
lation of several hundred mRNA ligands; many of them
overlap with known ASD genes (5). FXS emerges in early
childhood with deficits in motor, language, and commu-
nications skills as FMRP modulates the development of the
brain synapses (6). Intellectual disability (ID) in males and
behavioral features such as attentional network deficits,
perseveration, hypersensory (4), and social interaction dis-
orders such as social anxiety and ASD (7) are common as
well. Individuals with FXS often present for treatment for a
wide range of the aforementioned problem behaviors re-
quiring a complex combination of pharmacological, be-
havioral, and educational interventions (4). At present, no

target-symptoms or disease-modifying treatments for FXS
have received regulatory approval.

2. Preclinical Advances

Preclinical advances in FXS and other types of ASD
have provided the bases for promising targeted therapies
for humans with FXS and other types of ASD. Although
the FMR1 mouse model has propelled much interest in
the FXS field, number of failed clinical trials unfolded in
an attempt to establish the efficacy of these compounds.
Rigorous preclinical trials must be conducted to estab-
lish the efficacy of potentially beneficial agents before ac-
complishing human clinical trials (2). The vast majority
of twenty-two controlled clinical trials in FXS, the most
among all neurodevelopmental disorders, targeted the
core inhibitory/excitatory imbalance characteristic of FXS
(1). For these failed studies, tools to measure their key out-
comes were deemed inadequate, with limited validity and
reliability, including cognitive and behavioral (1).
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Brašić JR et al.

3. Biomarkers

Biomarkers associated with and sensitive to behavioral
changes would be particularly useful, including those to
measure the drug engagement of its targeted ligand. Re-
cently, a group of experts in the field of FXS strongly rec-
ommended an effort to develop and implement use of
biomarkers, such as electroencephalography (EEG), event-
related potential (ERP), and eye tracking (8), in clinical tri-
als in FXS (2).

4. Molecular Imaging

Molecular imaging, particularly positron emission to-
mography (PET) and single-photon emission computed to-
mography (SPECT), provides the tools to identify trans-
porters, neurotransmitters, and receptors in the brain of
humans. As such, molecular imaging can confirm that the
targets identified in the FMR1 animal models of FXS hold
for humans with FXS. These tools can confirm the target
engagement in other types of ASD (9), including Rett syn-
drome (10), and probably the targeted interventions in FXS.
Measurement of the density and the distribution of tar-
gets in the brain pre- and post-clinical trials in FXS will pro-
vide the means to determine whether the desired target en-
gagement was accomplished by the putative therapy. Since
molecular imaging uniquely identies the density and the
distribution of molecular targets in the brain, it is the cru-
cial tool to advance effective clinical trials for FXS. Thus,
molecular imaging is necessary despite the risks of those
techniques. For example, SPECT demonstrated reductions
of vesicular acetylcholine transporters in participants with
Rett syndrome (Figure 1) (10).

Informed consent was obtained from each patient in-
cluded in the study. The study protocol conforms to the
ethical guidelines of the 1975 Declaration of Helsinki Sub-
jects (11) as reflected in a prior approval by the Institution’s
Human Research Committee.

5. Risks of Molecular Imaging

Risks of molecular imaging are justified due to the
enormous critical data that will result from these studies.
The safety and efficacy of molecular imaging biomarkers
have been established on healthy adults. Now investiga-
tions of molecular imaging biomarkers on adults of FXS
and other types of ASD are urgently needed to conduct
definitive clinical trials.

Figure 1. Vesicular acetylcholine transporters reduced in participants with Rett
syndrome (lower panel) in contrast to healthy participants (upper panel). Images
of mean uptake on single-photon emission computed tomography (SPECT) one
day following the intravenous injection of approximately 333 MBq (9 mCi) (2)-5-
[123I]iodobenzovesamicol ([123I]IBVM), a radiotracer for vesicular acetylcholine trans-
porters to 8 healthy participants (upper panel) and 4 participants with Rett syn-
drome (lower panel). The left side of the brain is represented on the left of each
panel. Panels demonstrate transverse sections at striatum. The lower row illustrates
the reduced uptake in the participants with Rett syndrome in the striatum. Repro-
duced from (10), figure 6, page 478, with permission.

6. Radiation Exposure

Radiation exposure occurs during PET and SPECT. Par-
ticipants in these studies are asked to follow the limits
of radiation exposure for radiation workers, 5 rem per
year. Radiotracers for PET and SPECT are initially studied
on healthy adults to establish their safety and efficacy be-
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fore being carried out in individuals with FXS and other
subtypes of ASD. Thus, initially molecular imaging will be
administered to participants with FXS who are 18 years of
age or older, and primarily in males that carry the major
burden in FXS. Participants are studied carefully to deter-
mine that they are physically well.

7. Stillness

Stillness is a necessary component of successful molec-
ular imaging studies. Healthy participants typically can
refrain from motion for a scan lasting 90 minutes. Indi-
viduals with FXS and other types of ASD may experience
claustrophobia and anxiety when asked to enter a scan-
ner. For this reason behavioral psychologists have devel-
oped mock scan techniques to desensitize individuals with
FXS and other developmental disabilities to maintain a sta-
tionary position for the duration of scans (12-14). Higher
functioning individuals with FXS can typically be trained
with a mock scanner to complete the process with an ac-
tual scan. Lower functioning persons with FXS may not be
able to complete scans despite mock scan training. There-
fore, other options may be utilized. Sedation in the form
of a benzodiazepine may relax a person with FXS and other
types of ASD adequately to undergo a scan. However, gen-
eral anesthesia may be required to maintain the necessary
stillness for an adequate examination of individuals with
ID. General anesthesia was employed for molecular imag-
ing of participants with Rett syndrome, a type of ASD char-
acterized by profound ID (10).

8. Ethical Standards

The work was carried out in accordance with the rec-
ommendations of the World Medical Association in the
WMA Declaration of Helsinki - Ethical Principles for Medi-
cal Research Involving Human Subjects (11) and the Recom-
mendations for the Conduct, Reporting, Editing, and Publi-
cation of Scholarly Work in Medical Journals (15). The study
protocol conforms to the ethical guidelines of the 1975 Dec-
laration of Helsinki (11) as reflected in a prior approval by
the Institution’s Human Research Committee.

9. Conclusions

In summary, adequately measuring target engage-
ment in clinical trials for humans with FXS and other types
of ASD is a crucial step to begin to establish the success of
the putative therapies. Biomarkers are needed to demon-
strate that the specific deficits identified in animal models
of FXS can be translated into humans with FXS. Molecular

imaging provides that necessary tool to demonstrate the
success of promising interventions in humans with FXS
and other types of ASD. The benefits from applying these
tools in individuals with FXS and other types of ASD out-
weigh the risks of the utilization of the molecular imaging.
Investigations with these biomarkers are urgently needed
to provide the tools to meaningfully measure target en-
gagement in clinical trials of adults with FXS and other
types of ASD.
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