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Abstract

Previous studies indicated that intensity level might be a determining factor in the beneficial or adverse effects of exercise on spatial
memory. As intensive exercise appears to deteriorate learning and memory and recent reports have suggested that one-night sleep
deprivation improves mood and neurogenesis in depressed patients for at least one day. The present study was designed to investi-
gate the effect of REM sleep deprivation (REM-SD) on memory impairment induced by intense exercise. Animals had undergone an
intense protocol (speed: 18 m/min and no tilt for the first week, the duration and treadmill tilt were increased progressively, 10 min-
utes and five degrees increased in each week) of treadmill for five days a week for five weeks then deprived of sleep for 24 hours using
the water-filled multiple platforms. The level of mammalian Target of Rapamycin (mTOR) in the hippocampus and the prefrontal
cortex (PFC) was assessed by Western blotting. Five weeks of intensive exercise and 24h REM-SD were decreased the level of mTOR
expression; 24h REM-SD improved intensive exercise-associated decreases in the basal levels of mTOR. The present data suggested
that REM-SD might be considered as a compensatory factor for a short time. In addition, increasing in the mTOR level could improve
memory impairment-induced by intensive exercise.
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1. Background

Various characteristics and intensity of stimuli have
different effects on learning and memory. Physical exer-
cise and sleep can shift the learning and memory quality by
affecting intracellular factors and the expression of differ-
ent neurotransmitters that mediate this ability (1). Varies
traits of physical exercise determine the exercise-induced
effects; such as the different form of exercises like aerobics
or resistance, the frequency of repetition, the intensity and
volume of exercise (2).

In light of the evidence from different examines, we
have a better understanding that moderate intensity of
activity might improve cognitive functions (3), mood (4),
increased plasticity in young and adult (5), learning and
memory (6), and executive function (7). Whereas the
detrimental effects of severe intensity of physical exer-
cise on brain were proved; like mitochondrial dysfunction

(8), changes in intracellular cascades (9), and disruption
of hippocampal neurogenesis (10); moreover, intensive
and exhaustive running programs resulting to impaired
hippocampus-dependent memory due to a high index of
oxidative stress (11).

Several recent studies have demonstrated the impor-
tance of functional interactions between the areas in-
volved in learning and memory like hippocampus and pre-
frontal cortex. These interactions are crucial for the incor-
poration of cognitive and emotional information for sup-
porting adaptive actions like spatial information (12).

Multiple factors like physical exercise (13) or amount of
sleep (14) can impact on the neurotransmissions and cog-
nitive capacity. Animal studies suggest that insufficient
sleep increases level of stress hormones, which may re-
duce the new cell production in adult brains (15), neuro-
plasticity (16), proliferation of hippocampus cells (17), in-
hibiting mitochondrial metabolism (18), protein synthe-
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sis pathways (19), induce cellular and molecular inflamma-
tory variations (20), and increased Aβ plaque formation
(21).

Mammalian target of rapamycin (mTOR) is a protein
kinase involved in the synaptic plasticity and memory and
its pathway is activated during various cellular processes.
Brain neurotrophic factors, amino acids, inflammation,
and glucose are some of triggers of this cascade. This fac-
tor was used in animal studies for evaluating the effect of
different factors on learning and memory (22).

There are different intracellular signaling cascades,
which regulate learning and memory; MAPK, PI-3 kinase,
PLC, mTOR pathway, and etc. (23). mTOR is a protein kinase
involved in translation control, long-lasting synaptic plas-
ticity, and memory.

There have been a number of studies that show that
sleep deprivation influences adversely on cognitive abili-
ties like both non-declarative and declarative learning and
memory (24, 25), attention (26), decision-making (27), and
emotion perception (28). Moreover, some literature has
emerged contradictory findings of the effect of sleep de-
privation on learning and memory. Different types of SD,
either total or partial, have a fast and transient antidepres-
sant effect (29) and they were considered as a short-term
treatment for stress-induced depressive behaviors (29).

2. Objectives

In this research, we evaluate the amount of mTOR in
the hippocampus and prefrontal cortex to examine the ef-
fect of REM sleep deprivation (REM-SD) on the memory im-
pairment induced by severe physical exercise.

3. Methods

3.1. Animals

Adult male, Wistar rats were housed in groups of four
per cage on a 12 hours light: 12 hours dark cycle with free ac-
cess to the food and water. The experimental protocols and
procedures in this study were approved by the Research
and Ethics Committee of Tehran University of Medical Sci-
ences (NIH publications No. 80-23; revised 1996).

3.2. Experimental Procedure

Animals were randomly distributed into four different
groups, control (Cont.), physical exercise (Ex), 24 hours of
REM-sleep deprivation (24REM-SD), and the intervention of
EX and 24REM-SD (ExSd). Control animals are put in the im-
mobile treadmill as long as the Ex group. Animals in the
intervention group were gone under 24 hours REM-SD af-
ter the last session of exercise. The Ex group received five

weeks of treadmill exercise with increasing intensity grad-
ually. Animals were sacrificed and the brain tissue was col-
lected for assessing the amount of mTOR protein expres-
sion.

3.3. Exercise Training Protocol

Using a 4-lane animal treadmill (IITC Life Science Inc.,
USA), rats were handled and trained to familiarize with
running. The bars at the end of the treadmill delivered
electrical shocks (1.0 mA) to the hind part of the body
when the animal stops running and forced them to run for-
ward during exercise. After two days of rest, the procedure
was performed, one session daily, five days a week for five
weeks. The main phase of treadmill training started at a
speed of 18 m/min for 30 minutes and no tilt for the first
week. The time duration and tilt increased progressively, 10
minutes and five degrees increased each week. The speed
was maintained at 18m/min for the entire period. Seden-
tary animals were placed on a stationary treadmill daily
and were given electrical stimulation in a way that was
identical to that used for the exercise group.

3.4. Induction of REM Sleep Deprivation

REM sleep deprivation was induced by placing four to
six rats in modified water-filled multiple platforms that
consisted of eight small circular platforms, which sub-
merged to about 1 - 2 cm above the water surface. The plat-
forms were located at a distance so rats could move freely
from one to another and balance on the platforms. Due to
natural REM’s muscle paralysis, the rats would be exposed
to the water and awaken. The rats had free access to clean
water and food pellet baskets hanging from the aquarium
cover. For the control group, using larger platforms caused
falling asleep without falling down. The REM sleep depriva-
tion period lasted for 24 hours.

3.5. Western Blotting

Protein concentration was measured by spectropho-
tometry at 230 nm using Picodrop instrument (Picodrop,
Hinxton, UK), and the results were acquired as milligram
per milliliter. A total of 60 microgram of each sample was
loaded in SDS-8% polyacrylamide gel (pH = 8.3) and elec-
trophoresis was carried out at 120 V for 120 minutes, then,
they were transferred to polyvinylidene fluoride (PVDF)
membrane (Chemicon Millipore Co. Temecula, USA). To
block non-specific protein binding sites, membranes were
incubated in 5% skim milk (pH = 8.6) for 90 minutes. Then,
blots were incubated overnight at 4°C with a primary anti-
body (mTOR and p-mTOR primary antibody, Abcam, 1:1000
diluted in skimmed milk). On the next day, Tris-buffered
saline and Tween 20 (TBST) were used to wash membranes
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three times and then blots were incubated for 1 hour,
with a secondary antibody (Horseradish peroxidase-linked
goat anti-rabbit IgG, Abcam, 1:5000). To detect bounds,
blots were exposed by enhanced chemiluminescence (ECL;
Amersham, UK) and then visualized by exposure to autora-
diographic film for the adequate time.

3.6. Statistical Analysis

Statistical Package for the social sciences (SPSS, version
23) was used for this study. For analyzing western blotting
data, Image J software was used to densitometry of bonds.
After that, data obtained with Image J were subjected to
one-way ANOVA analysis using SPSS. Post-hoc (Tukey) test
was used for within-subject comparisons. In all compar-
isons, the P values 0.05 and less were considered as statis-
tically significant.

The entire experimental procedure part is summarized
as a timetable in Figure 1.

4. Results

4.1. The Effect of the Combination of High-Intensity Exercise and
REM-Sleep Deprivation on Hippocampal p-mTOR Levels

Figure 2A shows that there is a significant difference be-
tween groups versus control in p-mTOR levels in the hip-
pocampus [F (3,16) = 11.06, P < 0.0001]. Post-hoc Tukey anal-
ysis showed that there were significant differences in the
level of p-mTOR in the hippocampus between the Ex (P <
0.01), SD (P < 0.001), and ExSd (P < 0.05) groups as com-
pared with the control group. In addition, ExSd group
showed an enhancement in p-mTOR level in comparison
to the SD (P < 0.05) groups in the hippocampus.

4.2. The Effect of the Combination of High-Intensity Exercise and
REM-Sleep Deprivation on Prefrontal p-mTOR Levels

Figure 2B illustrates that there is a significant differ-
ence between groups in p-mTOR levels in the prefrontal
cortex [F (3,16) = 7.01, P < 0.001]. Post-hoc Tukey analysis
showed p-mTOR level in the PFC is significantly lower in the
Ex (P < 0.01) and SD (P < 0.05) groups when compared with
the control group; however. There is no significant differ-
ence between ExSd and the control group. Following the
intervention of Ex and SD, phosphorylation of mTOR was
elevated when compared with the Ex and SD (P < 0.001)
groups.

5. Discussion

The health benefits of a moderate physical exercise are
accepted, however, severe physical exercises lead to vari-
ous adverse effects in the brain and body. such as physi-
cal fatigue and exhaustion (3), excessive blood lactate (30),
decrease in glucose uptake (31, 32), changes in metabolism
(33), oxidative stress (34, 35), alteration of inflammatory
cytokine expression (36), and increasing the susceptibil-
ity to infection (37). Moreover, stress might be the most
detrimental factor, which can increase the concentration
of reactive oxygen species (ROS) (38). Brain with high mi-
tochondrial energy metabolism and weak antioxidant de-
fense could be most affected by oxidative damage induced
by high ROS levels (39). It results in reduction in the phos-
phatidylinositol 3-kinase (PI3K)/Akt/mTOR signaling path-
way in the PFC (40), reduction in phosphorylation levels of
mTOR and phospho-p70S6K in the PFC and hippocampus
(41, 42) or decreases BDNF expression in parallel to reduced
phosphorylation of mTOR and p70S6K in the hippocam-
pus of rats (43).

In the current study, the combined effect of SD and
intensive exercise on the level of p-mTOR -as a marker of
learning and memory- in the hippocampus and PFC was in-
vestigated. Our previous study indicated that severe exer-
cise causes a decrease of the total time in the target zone in
the Morris Water Maze test with corresponding reductions
in the expression of the hippocampal and prefrontal level
of BDNF and TrkB, which reduce memory performance (un-
der review).

The experiments that were carried out throughout
sleep deprivation showed controversial results. It is gener-
ally accepted that sleep deprivation, mostly, has a negative
effect on learning and memory by increasing hippocampal
oxidative stress (44), reduction of functional NMDAR in the
hippocampal neurons (45), attenuating mTOR-dependent
protein synthesis (46), decreases levels of brain-derived
neurotrophic factor (BDNF), and phosphorylated-cAMP re-
sponse element-binding protein (P-CREB) (47). However, in
glaring contradiction to the general view, some findings
indicated different actions of sleep deprivation as an ex-
perimental model of antidepressant treatment (48) and
mood improvement (49). In addition, short SD enhanced
BDNF level in the hippocampus has been shown (50). Fur-
thermore, one night of sleep deprivation significantly in-
creased cell proliferation in the hippocampus of rat (51).
There is a study that indicated that the extended wakeful-
ness might result in an increased level of BDNF in the hip-
pocampus (52).

To date, the mechanism of this controversial effect of
sleep deprivation has not been clarified. Sei et al. (53)
showed that there is no significant change in the BDNF
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Figure 1. The schematic timeline for study design. Two groups of animals received five weeks of physical exercise with a gradual increase in intensity (5 weeks, 5 days in a
week). Animals in ExSd group was under gone 24 hours REM-SD after the last session of exercise. REM-SD just received 24h REM-sleep deprivation. Control animals received
nothing. All animals were sacrificed after experimental procedures and their brain was collected for western blotting test.

Figure 2. A, The effect of 24h REM-SD on the decreased level of mTOR in severe exercised group in the hippocampus of the rat. Values are expressed as the means ± S.E.M. (n =
5 for each group); *P < 0.05, **P < 0.01 and ***P < 0.001 versus control, ˆP < 0.05 versus SD24. Ex = exercised group; SD24 = 24h REM- sleep deprivation; ExSd = they gave REM-SD
after five weeks intensive exercise. B, the effect of 24h REM-SD on the decreased level of mTOR in severe exercised group in the prefrontal cortex of the rat. Values are expressed
as the means ± S.E.M. (n = 5 for each group); *P < 0.05, **P < 0.01 versus control, ˆˆˆP < 0.001 versus SD24 and ###P < 0.001 versus Ex. Ex = exercised group; SD24 = 24h REM-
sleep deprivation; ExSd = they gave REM-SD after five weeks intensive exercise.

level in the rat hippocampus under the minimized stress-
ful condition. We proposed that sleep deprivation might

act as a compensatory factor only when the animal is under
severe stressful condition. To the best of our knowledge, it
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is the first study that evaluated the level of p-mTOR in the
SD animals.

5.1. Conclusions

The evidence from this study suggests that severe exer-
cise and REM-SD decreased the p-mTOR level in the PFC and
hippocampus. As mTOR had a critical role in cell prolifera-
tion, transcription, and cell growth, the deleterious effect
of sever-exercise and REM-SD might be related to this ki-
nase. Our results showed that 24 h REM-SD after five weeks
of sever exercise increased the level of p-mTOR in the PFC
and hippocampus, which might be related to the dual ef-
fect of SD on the cognitive function.
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