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Abstract

Context: Pathologic studies often show an involvement of the spinal cord in the early stages of the Alzheimer’s (AD) disease; clinical
studies further show a statistically-relevant frequency of gait impairment and an increased risk of falling. Therefore, the spinal cord
is possibly involved in the Alzheimer’s disease and has a role in the appearance of some symptoms.
Evidence Acquisition: Medline literature search.
Results: Several pathologic studies in animals and humans show abnormalities in the spinal cord and particularly in the anterior
horn lesions that are typical of AD. Several clinical studies show frequent and precocious impairment of the gait, which is possibly
related to the pathology of the spinal cord.
Conclusions: The AD disease does not only affect the brain, and cognitive symptoms, as well as non-cognitive symptoms are typical
of the early stages of the disease.
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1. Context

The chief symptoms of the Alzheimer’s disease (AD) are
cognitive; however in the earlier stages of the disease non-
cognitive symptoms can also appear (1). Anatomopatho-
logical studies have shown lesions typical of the AD outside
the regions of the brain typically involved in AD (2) or even
outside the brain (1). The aim of this report was to review
the potential involvement of the spinal cord in the AD and
its role in the appearance of some symptoms.

2. Evidence Acquisition

The Medline literature was scanned until august 2015
using ‘AD disease”, “spinal cord and AD”, “non-cognitive
symptoms in the AD” as keywords. Other studies were iden-
tified by reviewing relevant bibliography quoted in orig-
inal studies. Clinical studies were included if they could
meet these threshold criteria: 1) AD diagnosis according to
the NINCDS-ADRDA criteria (3); studies including patients
with dementias other than AD were only considered when
sufficient data on AD were provided; 2) Use of standardized
instruments for evaluation.

3. Results

Pathological studies on animals and humans were re-
trieved. Several studies on transgenic animals showed le-
sions that are typically associated with AD in the spinal
cord. Probst et al. (4) showed high levels of tau isoform
both in the brain and in the spinal cord of the transgenic
mouse AL217; most tau immunostained neurons were lo-
cated in the anterior horn. The authors underlie that,
unlike the cerebral spheroids, the spinal spheroid show
a strong reactivity to several anti-tau antibodies. The ax-
onopathy was abundant in the spinal cord and motor
deficit appeared at the age of one to three months. Similar
observations were reported by Wirths et al. (5) in the trans-
genic APP/PS1 mouse with elevated intraneuronal amyloid
β42 levels. The authors showed early alterations mostly
in the ventral horn and severe axonal pathology mostly
along the ventral horn but also in the intermediolateral
and dorsal horn. Lazarov et al. (6) showed an impairment
of the fast axonal transport responsible of functional mo-
tor deficits in the transgenic mouse expressing presenilin
1 variants. In the transgenic Tg2576 mouse, overexpressing
a mutant form of the amyloid β precursor protein, motor
deficits appeared at the age of 10 months along with a se-
vere reduction in the number of neurons present in the
lumbar spinal cord (7). Wirths et al. (8) drew attention to
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the inflammatory processes that are present in the mouse
APP/PA1K1 both in the brain and in the spinal cord; the au-
thors hypothesized that the early inflammatory reaction
contributes to the axonopathy and thus to motor impair-
ment. Severe axonopathy and motor impairment was stud-
ied in another model of the transgenic mouse 5XFAD (9).
Yuan et al. (10) studied amyloid β deposition in the cen-
tral part of the dorsal column corresponding to the cor-
ticospinal tract pathway and its projection region in the
TgCRND8 mouse. The authors hypothesized that neurons
in the sensorimotor cortex are the source of the amyloidβ
deposited in the spinal cord. Tesseur et al. (11) showed ax-
onal degeneration and gliosis in the brain and in the spinal
cord of the transgenic mouse expressing human APOE4, of-
ten associated with AD.

There are only a few pathologic studies in humans.
Ogomori et al. (12) showed amyloid deposits in the spinal
cord of 3/9 patients with onset of dementia before the age
of 65 years. Saito et al. (13) showed tau-related pathology
in 11/11 AD patients, mainly in the anterior horn but also in
the intermediate zone and in the posterior horn; seven pa-
tients also showed neurofibrillary tangles. These lesions
were more abundant at the cervical level and decreased
progressively at the thoracic and lumbar level. Small tau
reactivity was also noticed in 7/10 neurologically normal
subjects although none showed neurofibrillary tangles.
Schmidt et al. (14) showed neurofibrillary lesions in 18/19
patients with AD or one of its variants (not specified). The
lesions were mostly in the substantia intermedia and to a
lesser extend in the lateral, dorsal and ventral horns. In the
detailed work of Dugger et al. (15) the Authors examined
tau’s presence in the spinal cords of 46 AD patients and in
37 control patients. Tau immunoreactivity was noticed in
95.6% of the patients at the cervical level, in 68.9% at the
thoracic level, in 65.2% at the lumbar level and in 53.5% at
the sacral level. Controls also showed tau immunoreac-
tivity but significantly lower than that of the patients: in
43.2% at the cervical level, in 36.7% at the thoracic level, in
26.7 at the lumbar level and in 12.9% at the sacral level. In
two subjects classified at the Braak stage (16) 0 spinal tau
was absent whereas it was noticed in 4/10 subjects classi-
fied as Braak stage 1. On the basis of these data, the authors
hypothesized that the spinal cord’s involvement is preco-
cious but does not precede the involvement of the transen-
torhinal cortex. Spastic paraparesis is often described in
the familial AD due to mutations in presenilin 1 or 2. In
five patients with familial AD and mutations in presenilin
1, Verkkoniemi et al. (17) described degeneration of the
lateral corticospinal tracts at the level of the medulla ob-
longata and of the spinal cord. Degeneration of the corti-
cospinal tracts was also described by Rudzinski et al. (18)
in three members of another family with presenilin 1 mu-

tation.

3.1. Clinical Studies

The acts of standing and walking result from the in-
tegration of voluntary and involuntary processes. When
triggered emotionally, the regulation of locomotion pro-
cesses originate in the cerebral cortex or in the limbic-
hypothalamic system, whereas the automatic processes
are located in the brainstem and in the spinal cord. Two ar-
eas involved in the control of locomotion have been iden-
tified in the mesopontine tegmentum: the midbrain lo-
comotor region and the muscle tone inhibitory region.
Two pathways descending from the midbrain locomotor
region in the ventrolateral and in the dorsolateral funiculi
activate the locomotor central pattern generator, which
is formed by spinal interneuronal circuits. Inhibitory ef-
fects on muscle tone arise from pedunculopontine nu-
cleus, which in turn activates the reticular formation,
the medullary reticulospinal neurons and the spinal in-
hibitory neurons (19). From this short description, it is
clear that different lesions at different levels may impair
the capacity to stand and walk in different ways. Incom-
plete spinal cord injuries in experimental animals initially
impair their gait coordination (20, 21). In humans, sev-
eral studies show a clear relationship between dementia
and falls (2). Verghese et al. (22, 23) described the motoric
cognitive syndrome characterized by slow gait and cogni-
tive complaints. The increased risk for falling was ascribed
to specific cognitive deficits, including immediate mem-
ory (24) or visuospatial ability (25). However, several stud-
ies showed that increased risk of falling was not only re-
lated to the early stages of AD and to minimal cognitive
impairment (MCI) (26-29) but also to the presymptomatic
stages of the MCI (30-32). In particular, Buracchio et al. (31)
showed a decline in gait speed approximately 12 years be-
fore MCI. According to these data, it seems unlikely that
cognitive impairment alone may be responsible for an in-
creased risk of falls in the early stages of the disease, as
motor impairment is also likely to contribute. Whether
motor impairment is due to brain or spinal lesions is a
matter that requires further investigations. Theoretically,
medullar damage may provoke urinary disturbances. Sev-
eral studies showed a statistically-relevant correlation be-
tween urinary disturbances and dementia (33-37). Never-
theless, these studies had some limitations: neuropsycho-
logical assessment is not always precise and the study’s
sample was mainly limited to patients with severe AD, so it
remains difficult to reach any definitive conclusion. How-
ever, a specific study on transgenic animals provided an
interesting piece of information: in the AppSL/PS1M146L
mouse, Biallosterski et al. (38) showed a clear increase in
the number of VAChT+ and NOS+ nerve fibers within the
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lamina propria, which are sensory fibers contributing to
the afferent output of the bladder. Although it remains dif-
ficult to draw a conclusion, this work demonstrates that
a possible anatomical substrate may be responsible for
some urinary disturbances.

4. Conclusions

The AD is usually viewed as a degenerative disease of
the brain associated with cognitive disturbances. How-
ever, this understanding is rather limited and likely incom-
plete. The first interesting remark relates to the presence
of typical AD lesions not only in the spinal cord but also
outside the nervous system (1). A second relevant remark
concerns the sequence of the symptoms. According to the
national institute of aging and the Alzheimer association’s
workgroup (39), the average time between the deposition
of the β amyloid and the clinical syndrome of the AD de-
mentia is approximately a decade. We still don’t have ef-
fective therapies: recognizing the disease in its very early
stages would greatly improve drug research and the eval-
uation of their effectiveness. Third, in light of these ob-
servations, the diagnostic criteria of AD (3) could be re-
vised by including non-cognitive symptoms such as psy-
chiatric and motor disturbances. A fourth remark relates
to the possible misinterpretation of some tests used in
transgenic animals. Indeed some behavioral studies on
cognitive processes assume normal motility because the
cognitive status is deduced from behavioral performances.
However, since some animal models show impairment of
the motility, the results of these tests should be judged cau-
tiously (36).

However, two possible weakness of this work need to
be recognized:

1) This is a narrative and not a systematic review; 2) sug-
gestions for the involvement of the spinal cord in the AD
are strong but the available literature is not definitive.
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