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Abstract

General anesthesia is a widely used medical procedure. However, its underlying physiological mechanisms are still unknown. Cur-
rent research has identified bottom-up mechanisms in the brain involving subcortical sleep-promoting and arousal structures and
top-down mechanisms comprising corticocortical and corticothalamic circuits. The current work presents a neural model consider-
ing both mechanisms. Its numerical simulation yields frontal and occipital cortical activity that exhibits the characteristic spectral
changes as observed experimentally. In addition, increasing the anesthetic level enhances local synchrony and weakens distant
synchrony. This represents a fragmentation of the brain as observed in experimental data under anesthesia.
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1. Context

General anesthesia is an omnipresent medical proce-

dure in hospital practice. Today, general anesthesia is rec-

ognized as a safe medical procedure although it may ex-

hibit severe side effects such as postoperative confusion or

nausea and vomiting. One reason for the missing control

over these effects is the limited understanding of the sys-

temic physiological mechanisms of anesthetic actions and

how these are linked to physiological outcomes. A promi-

nent effect of most of the clinically relevant anesthetic

drugs is the characteristic spectral change in the electro-

physiological activity across cortical brain areas over mul-

tiple frequency bands (1, 2). A prominent spectral change

observed is the frequent induction of oscillatory activity in

the β-frequency band complemented by a subsequent de-

crease to the α-frequency band with increasing anesthetic

concentration. This spectral change correlates strongly

with the patients’ behavioral state, e.g., changes from a se-

dated state to loss of consciousness (LOC).

To better understand the relationship between the be-

havioral state change on a macroscopic description scale

and physiological action on a microscopic scale, it is rea-

sonable to describe the brain dynamics by a mesoscopic

abstract model that links the two description levels. For in-

stance, a mesoscopic system model describes effective neu-

ral action as bottom-up and top-down anesthetic mecha-

nisms (3, 4). The bottom-up mechanism considers anes-

thetic action on subcortical areas, such as the hypothala-

mus and the brainstem. The anesthetic action in sleep-

promoting and arousal-promoting regions is recognized

to play an important role in the depression of brain func-

tions and LOC. The top-down mechanism recognizes cor-

ticocortical and thalamocortical connectivity as the pri-

mary feature in the understanding of LOC. For instance,

anesthetic agents are known to affect synaptic receptors

in cortical neurons to disturb the interaction with thala-

mic structures that, in turn, induces sedation and LOC.

For more details, one can refer to the excellent article by

Mashour and Hudetz (3). To implement numerically such

mechanisms, we propose to utilize a neural population

model (5-7) that captures essential microscopic action and

describes macroscopic dynamics.

In our model (8), we consider a circuit between the cor-

tex and thalamic structures. This circuit is driven by fluctu-

ating input from the reticular activating system (RAS) that

sets the level of excitation in the brain (3, 8). This input

represents the bottom-up mechanism while anesthetic ac-

tion on the RAS is modeled as a variable intensity of ran-
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dom fluctuation. In addition, anesthetic agents are known

to affect synaptic receptors in the thalamus and the cor-

tex. We model this synaptic action in a mesoscopic ap-

proach. This model of synaptic cortical and thalamic ac-

tion represents the top-down mechanism. In a previous

work (8), we showed in detail that the combination of both

mechanisms is essential to describe a large number of well-

known observations.

The subsequent section introduces briefly the compu-

tational model, followed by simulation results. A final dis-

cussion puts the results into context and embeds them

into the current literature.

2. Evidence Acquisition

2.1. Bottom-Up Mechanism: The Reticular Activating System

Anesthetic agents are known to affect neural informa-

tion processing by modification of ion channel gates or

synaptic receptor properties (9, 10). Specifically, anesthet-

ics reduce both cortical input from the thalamus and tha-

lamic and cortical firing activity. This originates from inhi-

bition in the RAS (3, 8). By virtue of the complexity of the

input to the cortex and thalamus and since it is not known

in detail, an initial approach considers this external input

to the brain as fluctuations, which are random in time and

space. The proposed model takes into account neural pop-

ulation activity and random fluctuations model uncorre-

lated synaptic input to target neurons in the cortex and

thalamus with a high population firing rate.

Clinically relevant anesthetics affect GABAergic extra-

synaptic and synaptic receptors in the RAS (5, 11). GABAer-

gic synaptic receptors are present in the hypothalamus,

basal forebrain, and the brainstem (12, 13), which are part of

the RAS. There the anesthetics prolonged phasic responses

at synaptic receptors. Extra-synaptic receptors are present

in the brainstem, hypothalamus, and thalamus (5, 11, 14)

and anesthetics enhance their tonic inhibitory current. It

is important to mention that extra-synaptic receptors are

rather sensitive to anesthetic agents (15) and hence, they

probably play an important role in the understanding of

LOC.

2.2. Top-Down Mechanism: Anesthetic Effect Outside the RAS

In addition to the effect of fluctuations, a large num-

ber of anesthetics induce inhibition by modifying corti-

cal and thalamic GABAergic synaptic receptors. To model

this synaptic effect, the model considers a synaptic decay

time scale prolongation of inhibitory GABAergic receptors

(7, 16) while retaining constant the maximum synaptic im-

pulse response.

2.3. Bottom-Up and Top-Down Mechanism in a Single Dynamic

Model

For a deeper understanding of the underlying neu-

ral mechanism of electrophysiological activity changes,

we developed a thalamocortical network model including

both the frontal and the occipital cortex (Figure 1).

Figure 1. Illustration of thalamocortical network topology subjected to additive
fluctuations involving the cortex, lateral geniculate nucleus (LGN), and reticular tha-
lamic nucleus (RTN). Connections are delayed with τ th and τ rtn . Here, the cortex
may be the frontal or the occipital cortex, both of which are independent of each
other. For either case model parameters are different (8).

Previous theoretical studies have shown that it is suf-

ficient to consider the relationship between excitation

and inhibition in the system to explain major spectral

changes in the experimental electroencephalogram (EEG)

under anesthesia (7, 17). The network comprises delayed

recurrently connected neural ensembles of inhibitory in-

terneurons, excitatory pyramidal neurons, thalamic retic-

ular neurons (RTN) and thalamic lateral geniculate nu-

cleus (LGN) relay neurons. More details on the model are

presented elsewhere (8).

3. Results

Numerical simulations of the neural model provide

cortical excitatory and inhibitory mean potentials, as well

as mean potentials in the LGN and RTN. Moreover, the

model comprises spiking activity in each neural popula-

tion that allows, inter alia, to study the spike field coher-

ence between populations. The cortex may be the frontal
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cortex or the occipital cortex, for which the model param-

eters are different.

3.1. Bottom-Up Fluctuations

The RAS comprises a complex network of inhibitory

neural structures. Anesthetic agents may increase the

synaptic time constant, decrease the pre-synaptic firing

rate, and causes a decrease in the synapse’s phasic re-

sponse. In addition, anesthetic agents are known to in-

crease the tonic inhibitory current in GABAergic extra-

synaptic receptors (5, 11, 14).

Figure 2A demonstrates in model simulations (8) that

a strong anesthetic action decreases the mean level and

magnitude of RAS activity, i.e. the input to the cortico-

thalamic circuit. Figure 2B summarizes these results show-

ing the mean and standard deviation of fluctuations sub-

jected to the anesthetic level. This result agrees with experi-

mental evidence in anesthetized rats and humans (18). The

corresponding study shows that, in the isoelectric state,

primary and somatosensory neurons are fully responsive

to external stimuli. Such isoelectric states occur under

deep anesthesia. Hence, this study indicates that neurons

are not strongly inhibited in deep anesthesia, which con-

trasts to the hypothesis that deep anesthesia merely yields

synaptic inhibition. Consequently, anesthetic action di-

minishes the input from RAS to the neurons while retain-

ing the neurons’ responsiveness.

The proposed model does not specify in detail the rela-

tionship between anesthetic action and RAS fluctuation in-

tensity. We hypothesize that this relationship is an effective

mesoscopic description of physiological actions of anes-

thetics. This effective description may be powerful in the

light of complex interactions between different drugs and

hence, it is valid for the combinations of drugs. We hypoth-

esize that this effective action represents one of the main

bottom-up mechanisms of anesthetics in thalamocortical

populations.

3.2. Simulated EEG

In order to understand the bottom-up and top-down

mechanisms role of RAS and synaptic anesthetic action

in anesthesia, we simulated the thalamocortical neural

model described above. Modifying the RAS fluctuation

variance and the synaptic inhibition effect over time, we

gained the temporal evolution of the simulated EEG spec-

tral density seen in Figure 3. We found that the model

exhibits an emerging β-band activity with a subsequent

rhythmic slowing-down fluctuation intensity and increas-

ing anesthetic synaptic effect, as would occur when the

concentration of anesthetic drugs increases. This decelera-

tion represents a transition from the β- band activity to α-

activity. A subsequent increase of the fluctuation level and

decrease of the anesthetic synaptic effect invert the charac-

teristic spectral features. This shape of the power spectrum

reproduces well experimental data observed in frontal EEG

electrodes with the characteristic anesthetic smile (8, 19).

Figure 4 shows the simulation results of occipital EEG.

We observe an initial strong α oscillation well-known for

closed eyes (cf. Figure 4A). For decreasing fluctuation level

and excitatory input to the cortical excitatory population

and increasing anesthetic synaptic effect, theα oscillation

drops sharply in intensity and almost vanishes. This is in

close agreement with experimental findings (16). Here, the

change in the fluctuation intensity and the excitatory in-

put is part of the bottom-up mechanism while the synaptic

effect reflects the top-down mechanism effect.

3.3. Intra-Area and Inter-Area Synchronization

To better illustrate intra-cortical dynamics subjected to

the bottom-up and top-down mechanisms, Figures 5A and

5B show the simulated intra-area phase synchronization of

dendritic activity between frontal and occipital cortical ex-

citatory cells, respectively. For the frontal area seen in Fig-

ure 5A, we observe a monotonic phase synchronization en-

hancement with decreasing fluctuation level and increas-

ing the anesthetic synaptic effect. This is in good agree-

ment with the current knowledge that frontal EEG (and

hence frontal cortical population activity) is rather asyn-

chronous in the awake state (without anesthetic action)

and synchronous in the sedation phase and under deeper

anesthesia (20). In contrast, the phase synchronization of

the occipital cortex (Figure 5B) remains high for the whole

period. This contrasts to experimental EEG findings (20)

showing a drop of phase coherence in occipital electrodes.

This indicates a weak point in the model, which will be ad-

dressed in future work.

Phase synchrony reflects functional connectivity be-

tween neurons and their ensembles. In addition to intra-

area synchronization seen in Figures 5A and 5B, Figures 5C

and 5D show the cross spike-field coherence (8) between

the cortex and thalamic areas. Increasing the anesthetic

action in the bottom-up and top-down mechanisms elim-

inates the coherence between cortical and thalamic cells

in the full frequency spectrum. Hence, the thalamus and

cortex decouple functionally for weaker bottom-up fluctu-

ations and enhanced synaptic anesthetic action.
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Figure 2. Synaptic and extra-synaptic effects on the RAS input to cortical and thalamic activity (8); A, increasing anesthetic levels reduce the amplitude of excitatory mean
potentials in the RAS; B, mean and standard deviation of RAS input decreases with increasing anesthetic level.

Figure 3. Numerical simulation of frontal EEG; spectral power density (top panel),
fluctuation level D and anesthetic synaptic effect p (lower panel)

4. Conclusions

The model presented here describes the well-known

characteristic spectral changes in EEG (19 - 21), the enhance-

ment of local intra-area synchrony (20), and loss of inter-

area synchrony (22, 23). Our work introduces the bottom-

up notion of a general decrease in neural fluctuations orig-

inating in the RAS that tunes the anesthetic-induced behav-

ioral transitions. Hence, weaker RAS input reduces the neu-

ral information flow between neural structures and sepa-

rates functionally connected networks. In summary, our

results support the importance of fluctuating input from

the RAS as the bottom-up mechanism. Nevertheless, only

the combination of RAS input and synaptic anesthetic ac-

tion provide a coherent description of brain dynamics (8).

The current work investigated the dynamics in the

frontal and occipital cortex, but neglected other brain ar-

eas that are affected by anesthetics, such as the default

network (24) or the parietal cortex (25). Moreover, our

work showed the effects in light anesthesia but neglected

electrophysiological features found under deep anesthe-

sia, such as intra-area fragmentation (24), slow frequencies

< 1 Hz (19) or burst suppression (26).

Footnotes
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Figure 4. Numerical simulation of occipital EEG; A, spectral power density; B, fluctuation intensity D, excitatory input to the cortical excitatory population Ie and the anesthetic
synaptic effect as a factor of the synaptic decay time p, see (8) for more details.
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