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Abstract

Context: The major aim of tissue engineering is inducing of the body’s mechanisms to regenerate damaged tissues to original
condition and task. Scaffolds are 3D porous constructs which provide a cellular microenvironment needed for tissue engineering.
Choosing a biomaterial with proper biological, physical, and mechanical properties is of great importance in tooth tissue engineer-
ing. Thus, the current study reviews the properties of different polymers and ceramics for use as scaffolds in tooth dental regenera-
tion.
Evidence Acquisition: The current study searched databases such as Elsevier, Wiley, Google Scholar, and PubMed in English from
1972 to 2018. After going through the required process, 29 articles were eventually confirmed and enrolled in this review paper.
Conclusions: The results of this work confirmed that thanks to having the ability to provide suitable amounts of interconnected
porosities, high ratio of surface area to volume, proper mechanical strength, and different geometries required for tissue engineer-
ing, polymers are a good option for regeneration of tooth tissues. Although bioceramics such as calcium phosphate and glasses
have good biocompatibility and bioactivity, their poor mechanical properties and low degradation rate limit their extensive use in
tooth tissue regeneration.
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1. Context

Every year, a large number of people lose their teeth
due to severe dental pulp damage, infection, and periodon-
tal diseases (1). Regeneration of damaged teeth is a big deal
for every professional dentist. Because the tooth is not a
necessary tissue for human survival, its regeneration has
not been the main matter of discussion in recent years.
Tissue engineering science has showed lots of promise to
regenerate damaged teeth. Tissue engineering has three
main components: scaffolds, stem cells (SCs), and growth
factors (GFs). Scaffolds, as SC and GF carriers have a signifi-
cant role in the regeneration of damaged or lost tissues.

Scaffold biomaterials are classified into three main
groups: polymers, ceramics, and composites. Polymers are
one of the most attractive biomaterials for fabrication of
scaffolds because of having great ability in tuning their

properties with changes in composition, structure, and ar-
rangement of constituent macromolecules (2). Scaffold
biomaterials using in tooth tissue engineering might need
to meet different properties than those used in various
other tissues. Dental tissue engineering is expected to re-
generate damaged or lost components of a tooth such as
enamel, dentin, and pulp. To understand different factors
affecting the regeneration of dental tissues, it is essential
to study tooth development since birth.

The tooth is a complex tissue consisting of hard tissues,
dentine, and enamel which are connected to bone through
ligament tissue. The tooth is formed through sequential
reciprocal interactions between epithelial and mesenchy-
mal cells. The epithelial cells have an important role in en-
emal formation and mesenchymal cells generate all other
differentiated cells necessary for the formation of odonto-
blasts, pulp, and periodontal ligament.
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Tooth development consists of five main steps which
reflect key procedures (3). In the induction step, the men-
tal process is started by sending the signals from epithe-
lium to the mesenchyme. At the second stage, a bud is
formed which contains localized dental epithelial cells and
is surrounded by mesenchymal cells. Differentiation and
condensation of epithelial cells in the bud result in the
cap step. At this step, crown morphogenesis is started by
epithelial signaling center. In bell step, the precursors of
tooth cells are involved to generate ameloblasts, coordi-
nate enamel deposition, and odontoblasts. The general
shape of a tooth is formed at this step. At the final stage,
tooth eruption, both bone resorption, and root formation
occur. For regulating each process, signals are perma-
nently exchanged between epithelial and mesenchymal
cells (3).

In this review, different important biomaterials used
in dental tissue engineering are briefly discussed. We also
highlight the main properties of common biomaterials in
dental tissue repair and regeneration.

2. Evidence Acquisition

For this review paper, we searched the databases such
as Elsevier, Wiley, Google Scholar, and PubMed in English
from 1972 to 2018. At the first step, we selected 130 best
matching related papers and after reading abstracts care-
fully, in the second step, we picked 80 papers out. Finally,
29 articles were confirmed and enrolled in writing the cur-
rent paper.

3. Results

3.1. Scaffolds Requirements for Dental Tissue Engineering

As similar to different tissues, scaffold biomaterials
for tooth regeneration applications should meet some re-
quirements such as:

3.1.1. Mechanical Properties

Ideally, each kind of scaffold used in dental tissue engi-
neering should have the mechanical properties consistent
with the anatomical properties of the implanted place and
it should be strong enough to have a good working ability
with hand tools. Preparing scaffolds with good mechani-
cal properties is the first challenge in the engineering of
bone, cartilage, and dental tissues (4). For the mentioned
tissues, the prepared scaffolds should have good mechan-
ical integrity to maintain their function from the time of
implantation to the completion of the remodeling process
(5). Another point that should be mentioned is that the re-
generation of damaged tissues differs with the age of in-
dividuals. In young people, hard tissue fractures normally

take almost six months to heal to the point of load-bearing.
The suitable amount and volume of porosities inside the
scaffold construct allow for diffusion of oxygen, cells, and
nutrition diffusion. The mechanical properties and degra-
dation rate of scaffolds have a reverse relationship. For
this point, many scaffolds with high mechanical proper-
ties and good functionality in in-vitro applications have
failed when implanted in-vivo due to insufficient porosi-
ties and the weak ability for vascularization (5). It is evi-
dent that the existence of a balance between mechanical
properties and amount of porosities is vital for better per-
formance of scaffolds used in tissue engineering.

3.1.2. Biocompatibility

The very first criterion of each developed scaffold for
tissue engineering applications is that it should pass all
requirement tests for biocompatibility. In this way, cells
must attach, grow, and migrate through the scaffold and
finally proliferate before the formation of a new matrix.
The implanted biomaterials should show negligible reac-
tion with the immune system of the body.

3.1.3. Scaffold Architecture

One of the critical characteristics of prepared scaffolds
for engineering different tissues is their architecture. Scaf-
folds with a high amount of interconnected porosities al-
low cellular penetration and oxygen and nutrients dif-
fusion. Moreover, scaffolds should have interconnected
porosities to ensure waste product diffusion out of scaffold
within the construct without harmful interaction with sur-
rounding tissues (6, 7).

3.1.4. Biodegradability

The concept of tissue engineering is using a degrad-
able scaffold, to finally replace with the growing tissue. In
this view, implanted scaffolds should act as a temporary
construct which degrades over time by a coordinated rate
with the rate of tissue growth. An ideal scaffold must be
biodegradable to allow cells to generate their own extra-
cellular matrix (ECM) (8). The degradation of scaffold pro-
duced by-products should be non-toxic and leave the body
without adverse interaction with other tissues.

3.2. Biomaterials in Dental Tissue Engineering

3.2.1. Fibrin

Fibrin is a natural biopolymer formed by an enzymatic
reaction of fibrinogen and thrombin (9). Its properties
such as cell adhesion, biocompatibility, and immune re-
sponse are better when it is compared with other natu-
ral origin polymers like collagen. However, high shrink-
age, rapid degradation, and low mechanical properties are

2 Arch Neurosci. 2020; 7(1):e97014.

http://archneurosci.com


Farzin A et al.

its disadvantages (10). Several researchers have tried to
modify and optimize the characteristics of fibrin. The de-
creased shrinkage and controlled degradation rate were
achieved by droping poly L lysine in fibrin structure and
use of enzyme inhibitors, respectively (10). Furthermore, it
has been reported that use of a composite scaffold consist-
ing of fibrin and a kind of biocompatible reinforcement
such as hyaluronic acid, β-tricalcium phosphate (β-TCP),
and polyurethane has a significant role in improving the
mechanical properties of fibrin (11).

Using fibrin as a favorite biomaterial has several ad-
vantages such as transforming growth factor-beta (TGF-
β) transformation which results in collagen formation
by means of fibrinogen in the structure (12), providing a
proper environment for angiogenesis, good potential in
control of release of pro-angiogenic growth factors (13), in-
jectability, and shapeability to 3D structures.

Platelet-rich fibrin (PRF) and platelet rich plasma (PRP)
are components of blood which are a rich source of growth
factors and cytokines such as TGF-β and platelet derived
growth factor (PDGF). The PDGF attaches to endothelial
cells to make ability in growth while TGF-β induces bone
formation by binding with osteoblasts and stem cells. Yang
et al. (14) demonstrated the significant effect of fibrin
glue containing PRF and PRP in regeneration of all compo-
nents of tooth including crown, root, pulp, enamel, dentin,
cementum, blood vessels, and periodontal ligament in a
porcine model. They showed that bud cells surrounded by
PRF inside fibrin glue scaffold implanted in the tooth of a
pig.

3.2.2. Hyaluronic Acid

Hyaluronic acid is an anionic and non-sulfated gly-
cosaminoglycan found extensively in the ECM of connec-
tive, epithelial, and neural tissues. Even though hyaluronic
acid is a biocompatible polymer, its poor mechanical prop-
erties and fast degradation rate limit its wide use in the tis-
sue engineering applications. However, both its mechan-
ical strength and dissolving rate can be controlled by us-
ing cross-linking and chemical modification (15). Ganesh
et al. (16) developed alginate/ hyaluronic acid composite
scaffold with enhanced mechanical, physical, and cellular
properties.

Cell adhesive ligands such as arginine-glycine-aspartic
acid (RGD) peptide modifies the surface of the polymer
and improves the functionality of polymers in cell adhe-
sion, growth, and interaction (17). It has been reported that
RGD modified hyaluronic acid hydrogel has a great poten-
tial ability in cell attachment and proliferation (18). Since
hyaluronic acid hydrogel is injectable and can penetrate
perfectly through narrow canals, it can be extensively used
in endodontic and pulp regeneration.

3.2.3. Alginate

Alginate (Alg) as a natural polysaccharide is a non-toxic
and biocompatible polymer which can be considered as
an injectable biomaterial for dentin regeneration applica-
tions. However, its weakened mechanical strength limits
extensive applications of Alg in hard tissue engineering ap-
plications. One way to improve the mechanical strength of
Alg is the increase of calcium density inside Alg structure
by a cross-linking agent such as calcium chloride which in-
creases covalent cross linking (13).

The Alg hydrogel provides a proper substrate for releas-
ing encapsulated GFs such as TGFβ to improve dentin pulp
and periodontal regenerations. It has been reported that
acid-treated Alg builds the dentinal ECM and significantly
affects odontoblast-like cell differentiation (19). Srinivasan
et al. (20) showed the enhanced properties of Alg scaffold
containing nano-bioglass ceramic on human periodontal
ligament fibroblast cells (hPDLF) attachment, growth, and
alkaline phosphatase (ALP) activity.

3.2.4. Collagen

The most widespread protein found in hard and soft
connective tissues such as bone, cartilage, and skin is col-
lagen (21). Collagen has been also extensively used in re-
generative applications of dental tissues because of hav-
ing similar structural and chemical properties to predom-
inant structural protein existing in ECM of dental tissues
(22).

Collagen presents several prominent advantages of
biocompatibility and bioactivity which make it a favorable
biopolymer in promoting cellular attachment, migration,
proliferation, and differentiation. Theoretically, collagen
is dissolved in physiological human body environment
via a mild inflammatory interaction with collagenase en-
zyme. Because of having high tensile strength, collagen
can be used in fibrous forms and tensile load-bearing ap-
plications. However, its mechanical strength is not enough
to be used in pulp regeneration applications. It has been
reported that the crosslinking of collagen by glutaralde-
hyde or diphenyl phosphoryl azide improves its mechan-
ical properties (23).

Dental pulp stem cells (DPSCs) are believed to have
good attachment and proliferation into the collagen scaf-
fold. The triangle of collagen scaffold, DPSCs, and dentin
matrix acidic phosphoprotein 1 (DMP1) has promoted the
improved formation of ECM of pulp tissue (24).

3.2.5. Poly (Ethylene Glycol)

Poly (ethylene glycol) (PEG) is one of the favorite bio-
materials in tissue engineering applications because of
having high biocompatibility and mild degradation. Its
high stability in a physiological environment to cellular
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and protein adsorption decreases the rejection by the im-
mune system. The elevated cell adhesion and proliferation
of RGD peptides modified PEG has been reported (25). The
mechanical properties of PEG are modified by changing
the molecular weight and concentration of polymer. The
enhancement of molecular weight and concentration of
PEG result in its decreasing and increasing of elastic mod-
ulus, respectively (26). The photo-cross-linking of PEG has
several advantages to its thermal-cross-linking such as ease
of use and less harmful effect on encapsulated cells (27).

Fibrin-loaded PEG hydrogels show great potential abil-
ity in use as a scaffold for growth and proliferation of DP-
SCs and PDLSCs wherein mechanical supporting and an-
giogenesis properties are provided by PEG and fibrin hy-
drogels, respectively (28).

3.2.6. Ceramics

Bioceramic scaffolds including calcium phosphates
and glass ceramics have been widely used in the regener-
ation of hard tissues owing to their unique characteristics
such as good biocompatibility, bioactivity, osteoinductiv-
ity, osteoconductivity, and having a similar composition to
mineralized tissue.

Calcium phosphate ceramics used in tooth tissue
engineering applications are commonly hydroxyapatite
(HA, Ca10(PO4)6(OH)2) and tricalcium phosphate (TCP,
Ca3(PO4)2). Bioglasses are composition based on SiO2-
Na2O-CaO-P2O5 which can be extensively used in endodon-
tic application due to having high bioactivity. Nam et al.
(29) showed a good potential ability of calcium phosphate
scaffolds in hDPSC growth, attachment, proliferation, and
odontogenic differentiation. However, disadvantages as-
sociated with bioceramics such as poor mechanical prop-
erties, the difficulty of shaping, and high stability limit
their wide application in tissue engineering.

4. Conclusions

Tissue engineering has made major strides in dentin
tissue regeneration in recent years. Biomaterials in the
shape of porous constructs have provided a cellular mi-
croenvironment for optimal tooth regeneration. Today,
several types of research have evaluated physical, biolog-
ical, mechanical, and chemical properties of different bio-
materials to be used in replicating local extracellular ma-
trix of dentin tissues. In this review paper, we briefly dis-
cussed the properties of different polymers and ceramics
for application in dentin tissue engineering. We believe
that choosing the proper biomaterial helps us to regener-
ate tooth tissues in the best way.
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