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Abstract

Background: Rapidly growing mycobacteria (RGM) are increasingly recognized as a cause of human infections. Rapid and reliable
identification of RGM at species level should be carried out as a means of effective patient managements.
Methods: Twenty clinical samples of RGM isolated from suspected tuberculosis (TB) patients were included. Different phenotypic
tests and a hsp65-PCR restriction analysis (PRA) method were used to identify the isolated organisms to species level. Sequence
analysis of the rpoB gene was also used for molecular identification of clinical isolates.
Results: Phenotypic evaluation of clinical isolates assigned 19 (95%) isolates of RGM to M. fortuitum complex. Using hsp65-PRA, 13
isolates of M. fortuitum complex were identified as M. fortuitum, 4 isolates as M. abscessus and 1 isolates as M. chelonae. However,
two isolates had identical hsp65-PRA patterns; one was indistinguishable from M. conceptionense and M. senegalense and another
was indistinguishable from M. peregrinum and M. porcinum. By the rpoB gene sequence analysis, all species studied were readily
discriminated from each other.
Conclusions: rpoB gene sequencing has a high discriminatory power, which easily permits the identification of clinical isolates
of RGM to the species level. It unambiguously differentiates between closely related species with restricted biochemical and PRA
differences. This procedure is suggested as a first-line identification method for RGM.
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1. Background

Rapidly growing mycobacteria (RGM) are increasingly
recognized as a cause of human infections (1, 2). They are
capable of causing serious illnesses such as pulmonary
disease, skin and soft tissue infection and disseminated
infection in both immunocompetent and immunocom-
promised individuals (3-5). This group of mycobacteria is
heterogeneous in terms of epidemiology, clinical disease
spectrum and drug sensitivity. It is therefore important
to identify RGM to the species level (5-7). In most labora-
tories RGM identification currently relies on phenotypic
tests. These phenotypic tests, however, are cumbersome
and time-consuming and interpretation of the results is
sometimes ambiguous. Phenotypic tests sometimes fail to
discriminate between closely related species, such as My-
cobacterium abscessus and Mycobacterium chelonae (8-10).
Molecular tools including analyses of the 16S rRNA gene
for the identification of mycobacteria have been developed
in recent years (11-13). However, there is little variability

within the mycobacterial 16S rRNA gene sequence in RGM,
making this target a poor discriminator for closely related
species (11, 12, 14). rpoB is a single-copy gene encoding the
b-subunit of the bacterial RNA polymerase gene, which is
present in all mycobacteria. It is more variable than the
16S rRNA gene sequence and is therefore potentially useful
for the identification of genetically related species (1, 15).
The aim of this work was to evaluate the potential of partial
rpoB sequencing for the rapid identification of this group
of emerging pathogens.

2. Methods

2.1. Mycobacterial Isolates

In this cross-sectional study, 20 clinical isolates of RGM
collected by our clinical microbiology laboratory (Tehran
reference laboratory) from January 2014 to December 2015
were included. They were isolated from sputum of sus-
pected tuberculosis (TB) patients. If the patient had multi-
ple longitudinal sampling, only the first set of samples was
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included into the study. The ethics committee of Shahid Be-
heshti University of Medical Sciences approved the study
and all the patients have signed informed consent.

2.2. Phenotypic Identification

The clinical isolates were identified by conventional
methods, i.e. growth rate, macroscopic and microscopic
morphological features, growth at different temperatures,
tween 80 hydrolysis, nitrate reduction, niacin production,
arylsulfatase, urease production, tellurite reduction, salt
tolerance and catalase production, according to standard
procedures (16).

2.3. Restriction Analysis

PCR restriction analysis (PRA) was used to speciate
mycobacteria. Genomic DNA was extracted using a QI-
Aamp DNA Mini Kit (QIAGEN, USA). According to the
kits instruction, for PRA, approximately 441 bp fragment
of hsp65 gene was amplified by PCR using two specific
primers Tb11 (50-ACCAACGATGGTGTGTCCAT-30) and Tb12
(50-CTTGTCGAACCGCATACCCT-30) (17). PCR products were
digested with 5 U of restriction enzyme Hae III and Bst II
for 24 hours at 37°C. The pattern of digested products was
analyzed using 8% polyacrylamide gel. M. fortuitum (ATCC
49404) and double distilled water were used as positive
and negative control in all PCR experiments, respectively.
Species identification was performed using algorithm pro-
posed by Chimara et al. (18).

2.4. PCR and Sequencing of rpoB Gene

As previously described, a 750 bp fragment of the
rpoB gene was amplified and sequenced using two spe-
cific primers MycoF (50-GGCAAGGTCACCCCGAAGGG-30)
and MycoR (50-AGCGGCTGCTGGGTGATCATC-30) (1). The ob-
tained sequences for each isolate from different loci were
aligned separately and compared with all existing rele-
vant sequences of mycobacteria retrieved from the Gen-
Bank database at the NCBI website via the nucleotide BLAST
search (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

3. Results

3.1. Species Identification by Phenotypic Tests

On the basis of growth characteristics, the isolates
studied were classified within the RGM group. According
to phenotypic tests, 19 (95%) isolates assigned to the M. for-
tuitum complex and the one remaining isolate was uniden-
tifiable (Table 1).

3.2. hsp65-PRA-Based Identification

According to hsp65-PRA results, an identical pattern
was detected for the isolated microorganisms from each
patient. Using hsp65-PRA, 13 isolates of M. fortuitum com-
plex, which had been identified by phenotypic tests, were
identified as M. fortuitum, 4 isolates as M. abscessus and 1 iso-
lates as M. chelonae (Table 2). Thus, M. abscessus, formerly
Mycobacterium chelonae subsp. abscessus, was easily distin-
guished from M. chelonae and M. fortuitum. Two isolates had
identical hsp65-PRA patterns: one was indistinguishable
from M. conceptionense and M. senegalense due to the same
digestion pattern and another was indistinguishable from
M. peregrinum and M. porcinum.

3.3. Identification by rpoB Gene Sequencing

By using rpoB gene sequencing, all species studied
were readily discriminated from each other. M. senegalense
and M. porcinum, which could not be differentiated from
closely related species by phenotypic and genotypic meth-
ods, were easily differentiated by rpoB sequencing (Table 2).

4. Discussion

There are increasing reports of nontuberculous my-
cobacterial (NTM) infection not only in the immunocom-
promised but also in immunocompetent. Amongst those
species that are currently recognized, rapidly growing
species such as M. fortuitum, M. chelonae and M. abscessus
are frequently encountered and are clinically important
(19). RGM are amongst the most common NTM isolate as-
sociated with nosocomial diseases (19). Previous studies
demonstrated that tap water, processed tap water used for
dialysis, as well as piped water systems in hospital settings
are the usual nosocomial sources of NTM infections (19).
Compared to M. tuberculosis, RGM are even more difficult
to eradicate with common decontamination practices and
are relatively resistant to standard anti-TB drugs (20, 21).
Thus, transmission and spread of such NTM species from
nosocomial sources may constitute the major part of the
problem in hospital control strategies. As a result, rapid
and reliable identification of RGM, at species level, should
be carried out as a means of effective patient management
and molecular epidemiology. PRA is one of the methods
that is used and is simple and convenient (18, 22, 23). In
the current study, phenotypic evaluation assigned 19 (95%)
isolates to a species or complex. However, by the hsp65-
PRA analysis, nearly all RGM isolates were accordingly spe-
ciated. Similar to our study, other reports from different
parts of the world have shown that hsp65-PRA was signif-
icantly more accurate than the phenotypic methods (22-
24). Nonetheless, the presence of unknown patterns as a

2 Arch Pediatr Infect Dis. 2017; 5(2):e40001.

http://pedinfect.com/


Nasiri MJ et al.

Table 1. Results of RGM Identification by Phenotypic Tests

Numbers
of Isolates

Phenotypic Characterization of Clinical Isolates
Result

Growth at
37°C

Growth at
42°C

Growth
on Mac-
Conkey

Agar

Urease
Produc-

tion

Tween 80
Hydroly-

sis

Pigment
Produc-

tion

Growth
Rate

(Days)

Niacin
Produc-

tion

Nitrate
Reduc-

tion

Heat
Stable

Catalase

Tellurite
Reduc-

tion

Arylsulfatase
(3 days)

13 + + + + - N < 7 - 1+ + + + M.
fortuitum
complex

4 + - + + + N < 7 - - + - + M.
fortuitum
complex

1 + - + - + N < 7 + + + - + M.
fortuitum
complex

1 + - + + + N < 7 - 2+ + + + M.
fortuitum
complex

1 + - + + - N < 7 - - + + + Mycobacterium
sp.

Table 2. Results of RGM Identification by Genotypic Test and rpoB Sequencing

Numbers of Isolates Phenotypic Tests Patterns by hsp65-PRA Identification by PRA Identification by rpoB Sequencing

Bst E II Hae III

13 M. fortuitum complex 235/120/85 145/120/60/55 M. fortuitum M. fortuitum

4 M. fortuitum complex 235/210 145/70/60/55 M. abscessus M. abscessus

1 M. fortuitum complex 235/210 145/140/100/50 M. peregrinum or M. porcinum M. porcinum

1 M. fortuitum complex 235/120/85 140/125/60/55 M. conceptionense or M. senegalense M. senegalense

1 Mycobacterium sp. 320/130 200/60/55/50 M. chelonae M. chelonae

result of gel-to-gel variation due to small restriction frag-
ment sizes as well as identical patterns to that of M. concep-
tionense or M. senegalense based on the hsp65-PRA method
emphasized the need for a more reliable identification
method (16). rpoB gene sequencing is one of most common
technique currently used for Mycobacterium species iden-
tification (15, 25). In comparison with hsp65-PRA, sequence
analysis of rpoB can markedly improve molecular identifi-
cation of clinical isolates. In this study, all clinical isolates
were easily identified by using rpoB gene sequences analy-
ses. The isolates belonging to closely related species such
as M. conceptionense or M. senegalense and M. peregrinum
or M. porcinum, which were poorly discriminated by the
hsp65-PRA, were clearly delineated as M. senegalense and
M. porcinum, respectively. This indicated that the hsp65-
PRA was less discriminatory than the rpoB gene for RGM
identification. This result was consistent with prior re-
ports, which confirmed the high discriminatory power of
the rpoB gene for species identification of RGM (15, 16).

In conclusion, rpoB gene sequencing has a high dis-
criminatory power, which easily permits the identification
of clinical isolates of RGM to the species level. It unambigu-
ously differentiates between closely related species with re-

stricted biochemical and PRA differences, such as M. con-
ceptionense and M. senegalense. On the basis of the data pre-
sented here, we consider rpoB sequencing an appropriate
identification method for RGM isolated from human sam-
ples.
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